Department of Chemistry and Biochemistry, Seattle Pacific University , 3307 Third Avenue West, Seattle, Washington 98119, United States.
Acc Chem Res. 2014 Jun 17;47(6):1871-80. doi: 10.1021/ar500076k. Epub 2014 May 23.
CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles.
概述:纳米技术的核心目标是直接控制物质在分子纳米尺度上,以构建纳米工厂、纳米机器和其他潜在应用设备,包括电子、替代燃料和医学。在这方面,新兴的核酸作为一种材料,用于协调特定分子的精确排列,标志着纳米技术相对较近的历史上的一个重要里程碑。虽然 DNA 作为核酸纳米技术的先驱建筑材料,但 RNA 继续作为一种可行的替代材料出现,具有其自身独特的纳米结构优势。已经使用了几种互补的组装策略来构建具有独特结构属性和高度可编程和可控的自组装能力的多种 RNA 纳米结构。在不同的策略中,建筑术方法独特地努力通过排列其特征结构构建块来理解集成的结构 RNA 架构。从这个角度来看,很明显,自然界经常使用热力学稳定的、反复出现的模块化基元从天然 RNA 分子中产生独特和更复杂的可编程结构。利用自然结构中的设计原则,已经构建了许多合成 RNA。迄今为止构建的合成纳米结构不仅为 RNA 设计提供了重要的见解,而且还为 RNA 模块或构建块的结构自折叠和组装特性提供了重要的平台进行特征描述和验证。此外,RNA 纳米颗粒在纳米医学和基于 RNA 的治疗学应用中显示出巨大的应用前景。然而,迄今为止实现的合成 RNA 架构主要由静态、刚性颗粒组成,这些颗粒仍远远不能与核糖体、大核酶和核糖开关等天然响应性结构元件的结构和功能复杂性相匹配。因此,合成 RNA 设计的下一步将涉及到新的方法,将这些相同类型的动态和响应性架构实现到纳米结构中,作为细胞内外的真正纳米机器。随着对热力学和动力学对 RNA 自组装的影响之间的相互作用以及使用天然 RNA 作为指导原则的关注的增加,RNA 纳米技术可能会获得更广泛的应用和影响。
Acc Chem Res. 2014-5-23
Nano Lett. 2017-10-25
Curr Opin Struct Biol. 2006-8
Acc Chem Res. 2014-4-10
Prog Mol Biol Transl Sci. 2016
Acc Chem Res. 2014-5-22
Methods Mol Biol. 2015
Comput Struct Biotechnol J. 2025-3-17
Nucleic Acids Res. 2025-1-11
RNA Biol. 2024-1
Biophys J. 2024-3-5