Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.
Acc Chem Res. 2014 Jun 17;47(6):1673-80. doi: 10.1021/ar400316h. Epub 2014 Mar 21.
The base sequence in DNA dictates structural and reactivity features of the biopolymer. These properties are implemented to use DNA as a unique material for developing the area of DNA nanotechnology. The design of DNA machines represents a rapidly developing research field in the area of DNA nanotechnology. The present Account discusses the switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines, and it highlights potential applications and future perspectives of the area. Programmed switchable DNA machines driven by various fuels and antifuels, such as pH, Hg(2+) ions/cysteine, or nucleic acid strands/antistrands, are described. These include the assembly of DNA tweezers, walkers, a rotor, a pendulum, and more. Using a pH-oscillatory system, the oscillatory mechanical operation of a DNA pendulum is presented. Specifically, the synthesis and "mechanical" properties of interlocked DNA rings are described. This is exemplified with the preparation of interlocked DNA catenanes and a DNA rotaxane. The dynamic fuel-driven reconfiguration of the catenane/rotaxane structures is followed by fluorescence spectroscopy. The use of DNA machines as functional scaffolds to reconfigurate Au nanoparticle assemblies and to switch the fluorescence features within fluorophore/Au nanoparticle conjugates between quenching and surface-enhanced fluorescence states are addressed. Specifically, the fluorescence features of the different DNA machines are characterized as a function of the spatial separation between the fluorophore and Au nanoparticles. The experimental results are supported by theoretical calculations. The future development of reconfigurable stimuli-responsive DNA machines involves fundamental challenges, such as the synthesis of molecular devices exhibiting enhanced complexities, the introduction of new fuels and antifuels, and the integration of new payloads being reconfigured by the molecular devices, such as enzymes or catalytic nanoparticles. Exciting applications of these systems are ahead of us, and switchable catalytic nanoparticle systems, switchable enzyme cascades, and spatially programmed nanoparticles for innovative nanomedicine may be envisaged. Also, the intracellular reconfiguration of nucleic acids by stimuli-responsive DNA machines holds great promise as a means to silence genes or inhibit metabolic pathways.
DNA 中的基本序列决定了生物聚合物的结构和反应性特征。这些特性被用于将 DNA 用作开发 DNA 纳米技术领域的独特材料。DNA 机器的设计代表了 DNA 纳米技术领域中一个快速发展的研究领域。本综述讨论了受刺激响应型 DNA 机器控制的核酸纳米结构的可切换重构,并强调了该领域的潜在应用和未来前景。描述了受各种燃料和抗燃料(如 pH、Hg(2+)离子/半胱氨酸或核酸链/反链)驱动的可编程可切换 DNA 机器。这些包括 DNA 镊子、行走器、转子、摆锤等的组装。使用 pH 振荡系统,展示了 DNA 摆锤的振荡机械操作。具体而言,描述了互锁 DNA 环的合成和“机械”性质。通过制备互锁 DNA 超分子化合物和 DNA 轮烷来举例说明。通过荧光光谱法跟踪超分子化合物/轮烷结构的动态燃料驱动的重构。将 DNA 机器用作功能支架,以重新配置 Au 纳米粒子组装体,并在荧光团/Au 纳米粒子缀合物之间切换荧光特征,使其从猝灭状态转变为表面增强荧光状态。具体而言,作为荧光团和 Au 纳米粒子之间空间分离的函数,表征了不同 DNA 机器的荧光特征。实验结果得到了理论计算的支持。可重构刺激响应型 DNA 机器的未来发展涉及到一些基本挑战,例如合成具有更高复杂度的分子器件、引入新的燃料和抗燃料以及整合由分子器件重新配置的新有效载荷,例如酶或催化纳米粒子。这些系统的令人兴奋的应用前景广阔,可以设想可切换的催化纳米粒子系统、可切换的酶级联反应以及用于创新型纳米医学的空间可编程纳米粒子。此外,通过刺激响应型 DNA 机器对核酸进行的细胞内重构具有作为沉默基因或抑制代谢途径的手段的巨大潜力。