Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2014 May 9;112(18):185001. doi: 10.1103/PhysRevLett.112.185001. Epub 2014 May 5.
Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed nuclear yields, from a factor of ∼2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.
首次清晰地揭示并定量评估了从类流体动力驱动向强动力学冲击驱动内爆转变的明确证据。对一系列初始等摩尔 D3He 气体密度的内爆进行了研究,结果表明,随着密度的降低,流体动力学模拟与观测到的核产量之间的差异越来越大,预测值也越来越高,从 3.1mg/cm3 时的约 2 倍增加到 0.14mg/cm3 时的 100 倍。(相应的克努森数,即离子平均自由程与最小壳层半径之比,从 0.3 变化到 9;类似地,衡量动力学效应的另一个重要指标,即聚变燃烧持续时间与离子扩散时间之比,从 0.3 变化到 14。)这一结果与流体动力混合的影响无关。为了初步了解这种转变,在一维辐射输运代码的框架内,实现了一种包含梯度扩散和几种输运过程损耗项近似的简化离子动力学(RIK)模型。经过经验校准,RIK 模拟再现了观测到的产额趋势,这主要是由于离子扩散和反应尾离子的耗尽。