Suppr超能文献

基于机器学习的角膜环植入术后圆锥角膜患者角膜曲率(K1)和散光预测的新方法。

A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation.

机构信息

LabHuman, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain(1).

Dpt. Enginyeria Electrònica, Universitat de València, Avgda. Universitat, s/n, 46100, Burjassot, Valencia, Spain(2).

出版信息

Comput Methods Programs Biomed. 2014 Aug;116(1):39-47. doi: 10.1016/j.cmpb.2014.04.003. Epub 2014 Apr 18.

Abstract

Keratoconus (KC) is the most common type of corneal ectasia. A corneal transplantation was the treatment of choice until the last decade. However, intra-corneal ring implantation has become more and more common, and it is commonly used to treat KC thus avoiding a corneal transplantation. This work proposes a new approach based on Machine Learning to predict the vision gain of KC patients after ring implantation. That vision gain is assessed by means of the corneal curvature and the astigmatism. Different models were proposed; the best results were achieved by an artificial neural network based on the Multilayer Perceptron. The error provided by the best model was 0.97D of corneal curvature and 0.93D of astigmatism.

摘要

圆锥角膜(KC)是最常见的角膜扩张症类型。角膜移植曾是该病的首选治疗方法,但直到过去十年,角膜内环植入术越来越常见,已成为治疗 KC 的常用方法,从而避免了角膜移植。本工作提出了一种基于机器学习的新方法,用于预测 KC 患者环植入术后的视力增益。通过角膜曲率和散光来评估这种视力增益。提出了不同的模型,基于多层感知器的人工神经网络取得了最佳效果。最佳模型提供的误差为角膜曲率 0.97D 和散光 0.93D。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验