Suppr超能文献

人工智能作为圆锥角膜诊断方式的系统评价与荟萃分析。

Artificial intelligence as diagnostic modality for keratoconus: A systematic review and meta-analysis.

作者信息

Afifah Azzahra, Syafira Fara, Afladhanti Putri Mahirah, Dharmawidiarini Dini

机构信息

Undaan Eye Hospital, Surabaya, Indonesia.

Medical Profession Program, Faculty of Medicine, Universitas Sriwijaya, Palembang, South Sumatra, Indonesia.

出版信息

J Taibah Univ Med Sci. 2024 Jan 1;19(2):296-303. doi: 10.1016/j.jtumed.2023.12.007. eCollection 2024 Apr.

Abstract

OBJECTIVES

The challenges in diagnosing keratoconus (KC) have led researchers to explore the use of artificial intelligence (AI) as a diagnostic tool. AI has emerged as a new way to improve the efficiency of KC diagnosis. This study analyzed the use of AI as a diagnostic modality for KC.

METHODS

This study used a systematic review and meta-analysis following the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched selected databases using a combination of search terms: "((Artificial Intelligence) OR (Diagnostic Modality)) AND (Keratoconus)" from PubMed, Medline, and ScienceDirect within the last 5 years (2018-2023). Following a systematic review protocol, we selected 11 articles and 6 articles were eligible for final analysis. The relevant data were analyzed with Review Manager 5.4 software and the final output was presented in a forest plot.

RESULTS

This research found neural networks as the most used AI model in diagnosing KC. Neural networks and naïve bayes showed the highest accuracy of AI in diagnosing KC with a sensitivity of 1.00, while random forests were >0.90. All studies in each group have proven high sensitivity and specificity over 0.90.

CONCLUSIONS

AI potentially makes a better diagnosis of the KC with its high performance, particularly on sensitivity and specificity, which can help clinicians make medical decisions about an individual patient.

摘要

目的

圆锥角膜(KC)诊断面临的挑战促使研究人员探索将人工智能(AI)用作诊断工具。人工智能已成为提高圆锥角膜诊断效率的一种新方法。本研究分析了将人工智能用作圆锥角膜诊断方式的情况。

方法

本研究按照2020年系统评价和Meta分析优先报告条目(PRISMA)指南进行系统评价和Meta分析。我们使用搜索词组合在选定数据库中进行搜索:在过去5年(2018 - 2023年)内,从PubMed、Medline和ScienceDirect数据库中搜索“((人工智能)或(诊断方式))与(圆锥角膜)”。按照系统评价方案,我们筛选出11篇文章,其中6篇文章符合最终分析的条件。使用Review Manager 5.4软件对相关数据进行分析,并将最终结果以森林图的形式呈现。

结果

本研究发现神经网络是诊断圆锥角膜时最常用的人工智能模型。神经网络和朴素贝叶斯在诊断圆锥角膜时显示出人工智能的最高准确率,灵敏度为1.00,而随机森林的灵敏度>0.90。每组中的所有研究均证明灵敏度和特异性均高于0.90。

结论

人工智能凭借其高性能,特别是在灵敏度和特异性方面,有可能对圆锥角膜做出更好的诊断,这有助于临床医生对个体患者做出医疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a42/10821587/9f04d5af90e4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验