Malandrino A, Lacroix D, Hellmich C, Ito K, Ferguson S J, Noailly J
Biomechanics and Mechanobiology, Institute for Bioengineering of Catalonia, Barcelona, Spain.
INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
Osteoarthritis Cartilage. 2014 Jul;22(7):1053-60. doi: 10.1016/j.joca.2014.05.005. Epub 2014 May 21.
To investigate the relevance of the human vertebral endplate poromechanics on the fluid and metabolic transport from and to the intervertebral disc (IVD) based on educated estimations of the poromechanical parameter values of the bony endplate (BEP).
50 micro-models of different BEP samples were generated from μCTs of lumbar vertebrae and allowed direct determination of porosity values. Permeability values were calculated by using the micro-models, through the simulation of permeation via computational fluid dynamics. These educated ranges of porosity and permeability values were used as inputs for mechano-transport simulations to assess their effect on both the distributions of metabolites within an IVD model and the poromechanical calculations within the cartilaginous part of the endplate i.e., the cartilage endplate (CEP).
BEP effective permeability was highly correlated to local variations of porosity (R(2) ≈ 0.88). Universal patterns between bone volume fraction and permeability arose from these results and from other experimental data in the literature. These variations in BEP permeability and porosity had negligible effects on the distributions of metabolites within the disc. In the CEP, the variability of the poromechanical properties of the BEP did not affect the predicted consolidation but induced higher fluid velocities.
The present paper provides the first sets of thoroughly identified BEP parameter values that can be further used in patient-specific poromechanical studies. Representing BEP structural changes through variations in poromechanical properties did not affect the diffusion of metabolites. However, attention might be paid to alterations in fluid velocities and cell mechano-sensing within the CEP.
基于对骨终板(BEP)孔隙力学参数值的合理估计,研究人体椎体终板孔隙力学对椎间盘(IVD)内外液体及代谢物转运的相关性。
从腰椎的μCT图像生成50个不同BEP样本的微观模型,直接测定孔隙率值。通过计算流体动力学模拟渗透过程,利用微观模型计算渗透率值。将这些合理估计的孔隙率和渗透率值范围作为机械-运输模拟的输入,以评估它们对IVD模型内代谢物分布以及终板软骨部分即软骨终板(CEP)内孔隙力学计算的影响。
BEP有效渗透率与孔隙率的局部变化高度相关(R²≈0.88)。从这些结果以及文献中的其他实验数据得出了骨体积分数与渗透率之间的普遍模式。BEP渗透率和孔隙率的这些变化对椎间盘内代谢物的分布影响可忽略不计。在CEP中,BEP孔隙力学性质的变化不影响预测的固结,但会导致更高的流体速度。
本文提供了第一组经过全面确定的BEP参数值,可进一步用于特定患者的孔隙力学研究。通过孔隙力学性质的变化来表示BEP结构变化不会影响代谢物的扩散。然而,可能需要关注CEP内流体速度的改变和细胞机械传感。