Yakel Jerrel L
Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
J Physiol. 2014 Oct 1;592(19):4147-53. doi: 10.1113/jphysiol.2014.273896. Epub 2014 May 23.
Acetylcholine (ACh) can regulate neuronal excitability in the hippocampus, an important area in the brain for learning and memory, by acting on both nicotinic (nAChRs) and muscarinic ACh receptors. The primary cholinergic input to the hippocampus arises from the medial septum and diagonal band of Broca (MS-DBB), and we investigated how their activation regulated hippocampal synaptic plasticity. We found that activation of these endogenous cholinergic inputs can directly induce different forms of hippocampal synaptic plasticity with a timing precision in the millisecond range. Furthermore, we observed a prolonged enhancement of excitability both pre- and postsynaptically. Lastly we found that the presence of the α7 nAChR subtype to both pre- and postsynaptic sites appeared to be required to induce this plasticity. We propose that α7 nAChRs coordinate pre- and postsynaptic activities to induce glutamatergic synaptic plasticity, and thus provide a novel mechanism underlying physiological neuronal communication that could lead to timing-dependent synaptic plasticity in the hippocampus.
乙酰胆碱(ACh)可通过作用于烟碱型(nAChRs)和毒蕈碱型ACh受体来调节海马体中的神经元兴奋性,海马体是大脑中学习和记忆的重要区域。海马体的主要胆碱能输入来自内侧隔核和布罗卡斜角带(MS-DBB),我们研究了它们的激活如何调节海马体突触可塑性。我们发现,这些内源性胆碱能输入的激活可直接诱导不同形式的海马体突触可塑性,且具有毫秒级的时间精度。此外,我们观察到突触前和突触后兴奋性都有长时间增强。最后,我们发现突触前和突触后位点都存在α7 nAChR亚型似乎是诱导这种可塑性所必需的。我们提出,α7 nAChRs协调突触前和突触后活动以诱导谷氨酸能突触可塑性,从而提供了一种潜在的生理神经元通讯新机制,该机制可能导致海马体中依赖时间的突触可塑性。