Relizani Karima, Mouisel Etienne, Giannesini Benoit, Hourdé Christophe, Patel Ketan, Morales Gonzalez Susanne, Jülich Kristina, Vignaud Alban, Piétri-Rouxel France, Fortin Dominique, Garcia Luis, Blot Stéphane, Ritvos Olli, Bendahan David, Ferry Arnaud, Ventura-Clapier Renée, Schuelke Markus, Amthor Helge
Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany; UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.
Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Current address: Inserm UMR 1048, Université Paul Sabatier, Toulouse, France.
Mol Ther. 2014 Aug;22(8):1423-1433. doi: 10.1038/mt.2014.90. Epub 2014 May 27.
Myostatin regulates skeletal muscle size via the activin receptor IIB (ActRIIB). However, its effect on muscle energy metabolism and energy-dependent muscle function remains largely unexplored. This question needs to be solved urgently since various therapies for neuromuscular diseases based on blockade of ActRIIB signaling are being developed. Here, we show in mice, that 4-month pharmacological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myopathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB signaling downregulates porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Further, ActRIIB blockade reduces muscle capillarization, which further compounds the metabolic stress. We show that ActRIIB regulates key determinants of muscle metabolism, such as Pparβ, Pgc1α, and Pdk4 thereby optimizing different components of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular disorders.
肌肉生长抑制素通过激活素受体IIB(ActRIIB)调节骨骼肌大小。然而,其对肌肉能量代谢和能量依赖性肌肉功能的影响在很大程度上仍未得到探索。由于正在开发基于阻断ActRIIB信号传导的各种神经肌肉疾病治疗方法,这个问题亟待解决。在此,我们在小鼠中发现,用可溶性ActRIIB-Fc进行4个月的药物性ActRIIB信号传导消除会引发极端的肌肉疲劳。这与血清乳酸水平升高以及mdx小鼠(杜兴氏肌肉营养不良症的动物模型)中的严重代谢性肌病有关。阻断ActRIIB信号传导会下调孔蛋白,孔蛋白是细胞溶质和线粒体基质之间关键的ADP/ATP穿梭体,导致通过体内磷磁共振波谱((31)P-MRS)测量的氧化磷酸化连续缺乏。此外,ActRIIB阻断会减少肌肉毛细血管化,这进一步加剧了代谢应激。我们表明,ActRIIB调节肌肉代谢的关键决定因素,如Pparβ、Pgc1α和Pdk4,从而优化肌肉能量代谢的不同组成部分。总之,ActRIIB信号传导赋予骨骼肌高氧化能力和低疲劳性。ActRIIB阻断后的严重代谢副作用警示人们,至少单独使用这种策略来治疗神经肌肉疾病时要谨慎。