Pharmacology & Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany.
Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
Biochem Pharmacol. 2014 Aug 1;90(3):307-19. doi: 10.1016/j.bcp.2014.05.012. Epub 2014 May 23.
Activation of G protein-coupled receptors involves major conformational changes of the receptor protein ranging from the extracellular transmitter binding site to the intracellular G protein binding surface. GPCRs such as the muscarinic acetylcholine receptors are commonly probed with radioantagonists rather than radioagonists due to better physicochemical stability, higher affinity, and indifference towards receptor coupling states of the former. Here we introduce tritiated iperoxo, a superagonist at muscarinic M₂ receptors with very high affinity. In membrane suspensions of transfected CHO-cells, [³H]iperoxo - unlike the common radioagonists [³H]acetylcholine and [³H]oxotremorine M - allowed labelling of each of the five muscarinic receptor subtypes in radioagonist displacement and saturation binding studies. [³H]iperoxo revealed considerable differences in affinity between the even- and the odd-numbered muscarinic receptor subtypes with affinities for the M₂ and M₄ receptor in the picomolar range. Probing ternary complex formation on the M₂ receptor, [³H]iperoxo dissociation was not influenced by an archetypal allosteric inverse agonist, reflecting activation-related rearrangement of the extracellular loop region. At the inner side of M₂, the preferred Gi protein acted as a positive allosteric modulator of [³H]iperoxo binding, whereas Gs and Gq were neutral in spite of their robust coupling to the activated receptor. In intact CHO-hM₂ cells, endogenous guanylnucleotides promoted receptor/G protein-dissociation resulting in low-affinity agonist binding which, nevertheless, was still reported by [³H]iperoxo. Taken together, the muscarinic superagonist [³H]iperoxo is the best tool currently available for direct probing activation-related conformational transitions of muscarinic receptors.
G 蛋白偶联受体的激活涉及受体蛋白的重大构象变化,范围从细胞外递质结合位点到细胞内 G 蛋白结合表面。由于更好的物理化学稳定性、更高的亲和力以及对前体受体偶联状态的不敏感性,像毒蕈碱乙酰胆碱受体这样的 GPCR 通常用放射性拮抗剂而不是放射性激动剂来探测。在这里,我们引入了放射性过氧,这是一种对毒蕈碱 M₂ 受体具有超高亲和力的超级激动剂。在转染 CHO 细胞的膜悬浮液中,与常见的放射性激动剂[³H]乙酰胆碱和[³H]氧托溴铵不同,[³H]iperoxo - 允许在放射性激动剂置换和饱和结合研究中标记五种毒蕈碱受体亚型中的每一种。[³H]iperoxo 显示出偶数和奇数毒蕈碱受体亚型之间的亲和力有相当大的差异,对 M₂ 和 M₄ 受体的亲和力在皮摩尔范围内。在 M₂ 受体上探测三元复合物的形成,[³H]iperoxo 的解离不受典型的变构反向激动剂的影响,这反映了细胞外环区与激活相关的重排。在 M₂ 的内侧,首选的 Gi 蛋白作为[³H]iperoxo 结合的正变构调节剂,而 Gs 和 Gq 尽管与激活的受体强烈偶联,但却是中性的。在完整的 CHO-hM₂ 细胞中,内源性鸟苷核苷酸促进受体/G 蛋白解离,导致低亲和力激动剂结合,尽管如此,[³H]iperoxo 仍能报告这种结合。总之,毒蕈碱超级激动剂[³H]iperoxo 是目前用于直接探测毒蕈碱受体激活相关构象转变的最佳工具。