Cifuentes-Araya Nicolás, Astudillo-Castro Carolina, Bazinet Laurent
Institute of Nutrition and Functional Foods (INAF) and Dairy Research Center (STELA), Department of Food Sciences and Nutrition, Pavillon Comtois, Université Laval, Sainte-Foy, QC G1V 0A6, Canada.
Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Valparaíso, Chile.
J Colloid Interface Sci. 2014 Jul 15;426:221-34. doi: 10.1016/j.jcis.2014.03.054. Epub 2014 Apr 4.
Experiments revealed the fouling nature evolutions along different electrodialysis (ED) trials, and how it disappears when current pulsation acts repetitively on the interfaces of ion-exchange membranes (IEMs). Fouling was totally controlled on the diluate side of cation-exchange membrane (CEM) by the repetitive pulsation frequency of the higher on-duty ratios applied. They created steady water splitting proton-barriers that neutralized OH(-) leakage through the membrane, decreasing the interfacial pH, and fouling of the concentrate side. The anion-exchange membrane (AEM) on the diluate side was similarly protected, but it was fouled once water splitting OH(-) generation became either intense enough or excessively weak. Interestingly, amorphous magnesium hydroxide (AMH) stemmed on the CEM-diluate side from brucite under intense water splitting OH(-) generation, and/or strong OH(-) leakage electromigration through the membrane. Water dissociation and overlimiting current regimes triggered drastic water molecule removal from crystal lattices through an accelerated cascade water splitting reaction. Also, amorphous calcium carbonate (ACC) appeared on CEM under intense water splitting reaction, and disappeared once intense OH(-) leakage was allowed by the water splitting proton-barrier dissipation. Our findings have implications for membrane fouling control, as well as for the understanding of the growth behavior of CaCO3 and Mg(OH)2 species on electromembrane interfaces.
实验揭示了不同电渗析(ED)试验过程中污垢性质的演变,以及当电流脉动反复作用于离子交换膜(IEM)界面时污垢是如何消失的。通过施加较高占空比的重复脉动频率,阳离子交换膜(CEM)稀释侧的污垢得到了完全控制。它们形成了稳定的水分解质子屏障,中和了通过膜泄漏的OH(-),降低了界面pH值以及浓缩侧的污垢。稀释侧的阴离子交换膜(AEM)也得到了类似的保护,但一旦水分解产生的OH(-)变得足够强烈或过弱,它就会被污染。有趣的是,在强烈的水分解产生OH(-)以及/或者通过膜的强烈OH(-)泄漏电迁移的情况下,CEM稀释侧会由水镁石产生无定形氢氧化镁(AMH)。水离解和过极限电流状态通过加速级联水分解反应引发了晶格中水分子的剧烈去除。此外,在强烈的水分解反应下,CEM上会出现无定形碳酸钙(ACC),一旦水分解质子屏障消散导致强烈的OH(-)泄漏,ACC就会消失。我们的研究结果对膜污染控制以及对电膜界面上CaCO3和Mg(OH)2物种生长行为的理解具有重要意义。