Suppr超能文献

与芳香族氨基酸脱羧酶缺乏症相关突变的全景:从分子机制到治疗意义

A comprehensive picture of the mutations associated with aromatic amino acid decarboxylase deficiency: from molecular mechanisms to therapy implications.

作者信息

Montioli Riccardo, Dindo Mirco, Giorgetti Alejandro, Piccoli Stefano, Cellini Barbara, Voltattorni Carla Borri

机构信息

Department of Life Sciences and Reproduction (Section of Biological Chemistry) and.

Department of Biotechnology, University of Verona, Verona, Italy.

出版信息

Hum Mol Genet. 2014 Oct 15;23(20):5429-40. doi: 10.1093/hmg/ddu266. Epub 2014 May 27.

Abstract

Dopa decarboxylase (DDC), or aromatic amino acid decarboxylase (AADC), is a pyridoxal 5'-phosphate enzyme responsible for the production of the neurotransmitters dopamine and serotonin. Deficit of this enzyme causes AADC deficiency, an inherited neurometabolic disorder. To date, 18 missense homozygous mutations have been identified through genetic screening in ∼80 patients. However, little is known about the mechanism(s) by which mutations cause disease. Here we investigated the impact of these pathogenic mutations and of an artificial one on the conformation and the activity of wild-type DDC by a combined approach of bioinformatic, spectroscopic and kinetic analyses. All mutations reduce the kcat value, and, except the mutation R347Q, alter the tertiary structure, as revealed by an increased hydrophobic surface and a decreased near-UV circular dichroism signal. The integrated analysis of the structural and functional consequences of each mutation strongly suggests that the reason underlying the pathogenicity of the majority of disease-causing mutations is the incorrect apo-holo conversion. In fact, the most remarkable effects are seen upon mutation of residues His70, His72, Tyr79, Phe80, Pro81, Arg462 and Arg447 mapping to or directly interacting with loop1, a structural key element involved in the apo-holo switch. Instead, different mechanisms are responsible for the pathogenicity of R347Q, a mere catalytic mutation, and of L38P and A110Q mutations causing structural-functional defects. These are due to local perturbation transmitted to the active site, as predicted by molecular dynamic analyses. Overall, the results not only give comprehensive molecular insights into AADC deficiency, but also provide an experimental framework to suggest appropriate therapeutic treatments.

摘要

多巴脱羧酶(DDC),即芳香族氨基酸脱羧酶(AADC),是一种依赖磷酸吡哆醛5'-磷酸的酶,负责生成神经递质多巴胺和血清素。该酶缺乏会导致AADC缺乏症,这是一种遗传性神经代谢紊乱疾病。迄今为止,通过对约80名患者进行基因筛查,已鉴定出18种错义纯合突变。然而,对于这些突变导致疾病的机制知之甚少。在此,我们通过生物信息学、光谱学和动力学分析相结合的方法,研究了这些致病突变以及一个人工突变对野生型DDC构象和活性的影响。所有突变均降低了kcat值,除了R347Q突变外,其他突变均改变了三级结构,这表现为疏水表面增加和近紫外圆二色性信号降低。对每个突变的结构和功能后果进行综合分析强烈表明,大多数致病突变致病性的根本原因是脱辅基-全酶转换不正确。事实上,当映射到环1或与环1直接相互作用的残基His70、His72、Tyr79、Phe80、Pro81、Arg462和Arg447发生突变时,会产生最显著的影响,环1是参与脱辅基-全酶转换的关键结构元件。相反,R347Q(一个单纯的催化突变)以及导致结构-功能缺陷的L38P和A110Q突变的致病性则由不同机制所致。如分子动力学分析所预测的,这些是由于传递到活性位点的局部扰动所致。总体而言,这些结果不仅为AADC缺乏症提供了全面的分子见解,还提供了一个实验框架,以建议合适的治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验