Suppr超能文献

钠离子依赖型谷氨酸转运体的激活通过钙/钙调蛋白依赖性激酶 IIβ 的肌动蛋白结合/稳定结构域的信号转导调节少突胶质细胞成熟的形态学方面。

Activation of sodium-dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulin-dependent kinase IIβ's actin-binding/-stabilizing domain.

机构信息

Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F, México.

出版信息

Glia. 2014 Sep;62(9):1543-1558. doi: 10.1002/glia.22699. Epub 2014 May 28.

Abstract

Signaling via the major excitatory amino acid glutamate has been implicated in the regulation of various aspects of the biology of oligodendrocytes, the myelinating cells of the central nervous system (CNS). In this respect, cells of the oligodendrocyte lineage have been described to express a variety of glutamate-responsive transmembrane proteins including sodium-dependent glutamate transporters. The latter have been well characterized to mediate glutamate clearance from the extracellular space. However, there is increasing evidence that they also mediate glutamate-induced intracellular signaling events. Our data presented here show that the activation of oligodendrocyte expressed sodium-dependent glutamate transporters, in particular GLT-1 and GLAST, promotes the morphological aspects of oligodendrocyte maturation. This effect was found to be associated with a transient increase in intracellular calcium levels and a transient phosphorylation event at the serine (S)(371) site of the calcium sensor calcium/calmodulin-dependent kinase type IIβ (CaMKIIβ). The potential regulatory S(371) site is located within CaMKIIβ's previously defined actin-binding/-stabilizing domain, and phosphorylation events within this domain were identified in our studies as a requirement for sodium-dependent glutamate transporter-mediated promotion of oligodendrocyte maturation. Furthermore, our data provide good evidence for a role of these phosphorylation events in mediating detachment of CaMKIIβ from filamentous (F)-actin, and hence allowing a remodeling of the oligodendrocyte's actin cytoskeleton. Taken together with our recent findings, which demonstrated a crucial role of CaMKIIβ in regulating CNS myelination in vivo, our data strongly suggest that a sodium-dependent glutamate transporter-CaMKIIβ-actin cytoskeleton axis plays an important role in the regulation of oligodendrocyte maturation and CNS myelination.

摘要

通过主要兴奋性氨基酸谷氨酸的信号转导,已经涉及到调节少突胶质细胞生物学的各个方面,少突胶质细胞是中枢神经系统(CNS)的髓鞘形成细胞。在这方面,少突胶质细胞谱系的细胞已被描述表达各种谷氨酸反应性跨膜蛋白,包括钠依赖性谷氨酸转运体。后者已被很好地描述为介导谷氨酸从细胞外空间清除。然而,越来越多的证据表明,它们也介导谷氨酸诱导的细胞内信号事件。我们在这里提出的数据表明,激活少突胶质细胞表达的钠依赖性谷氨酸转运体,特别是 GLT-1 和 GLAST,促进少突胶质细胞成熟的形态方面。这种效应与细胞内钙水平的短暂增加和钙/钙调蛋白依赖性激酶 IIβ(CaMKIIβ)丝氨酸(S)(371)位点的短暂磷酸化事件有关。潜在的调节 S(371)位点位于 CaMKIIβ 以前定义的肌动蛋白结合/稳定结构域内,我们的研究确定了该结构域内的磷酸化事件是钠依赖性谷氨酸转运体介导的少突胶质细胞成熟促进所必需的。此外,我们的数据为这些磷酸化事件在介导 CaMKIIβ 从丝状(F)-肌动蛋白上脱离,从而允许少突胶质细胞的肌动蛋白细胞骨架重塑的作用提供了很好的证据。结合我们最近的研究结果,该研究表明 CaMKIIβ 在体内调节中枢神经系统髓鞘形成中起着关键作用,我们的数据强烈表明,钠依赖性谷氨酸转运体-CaMKIIβ-肌动蛋白细胞骨架轴在调节少突胶质细胞成熟和中枢神经系统髓鞘形成中起着重要作用。

相似文献

2
CaMKIIβ regulates oligodendrocyte maturation and CNS myelination.
J Neurosci. 2013 Jun 19;33(25):10453-8. doi: 10.1523/JNEUROSCI.5875-12.2013.
4
8
The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics.
Neuropharmacology. 2019 Dec 15;161:107559. doi: 10.1016/j.neuropharm.2019.03.002. Epub 2019 Mar 6.
10
Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes.
Glia. 2014 Aug;62(8):1270-83. doi: 10.1002/glia.22679. Epub 2014 Apr 29.

引用本文的文献

2
Glutamatergic systems in neuropathic pain and emerging non-opioid therapies.
Pharmacol Res. 2022 Nov;185:106492. doi: 10.1016/j.phrs.2022.106492. Epub 2022 Oct 10.
3
Lysophosphatidic acid signaling via LPA : A negative modulator of developmental oligodendrocyte maturation.
J Neurochem. 2022 Dec;163(6):478-499. doi: 10.1111/jnc.15696. Epub 2022 Oct 18.
4
EAAT1-dependent Transcriptional Control depends on the Substrate Translocation Process.
ASN Neuro. 2022 Jan-Dec;14:17590914221116574. doi: 10.1177/17590914221116574.
6
Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia.
Glia. 2021 Nov;69(11):2658-2681. doi: 10.1002/glia.24064. Epub 2021 Jul 27.
7
The roles of neuron-NG2 glia synapses in promoting oligodendrocyte development and remyelination.
Cell Tissue Res. 2020 Jul;381(1):43-53. doi: 10.1007/s00441-020-03195-9. Epub 2020 Mar 31.
8
Glutamate Transporters and Mitochondria: Signaling, Co-compartmentalization, Functional Coupling, and Future Directions.
Neurochem Res. 2020 Mar;45(3):526-540. doi: 10.1007/s11064-020-02974-8. Epub 2020 Jan 30.
9
Sodium-Calcium Exchangers of the SLC8 Family in Oligodendrocytes: Functional Properties in Health and Disease.
Neurochem Res. 2020 Jun;45(6):1287-1297. doi: 10.1007/s11064-019-02949-4. Epub 2020 Jan 11.

本文引用的文献

1
Measurement of co-localization of objects in dual-colour confocal images.
J Microsc. 1993 Mar;169(3):375-382. doi: 10.1111/j.1365-2818.1993.tb03313.x.
2
Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes.
PLoS Biol. 2013 Dec;11(12):e1001743. doi: 10.1371/journal.pbio.1001743. Epub 2013 Dec 31.
3
Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.
PLoS Biol. 2013 Jul;11(7):e1001604. doi: 10.1371/journal.pbio.1001604. Epub 2013 Jul 9.
4
CaMKIIβ regulates oligodendrocyte maturation and CNS myelination.
J Neurosci. 2013 Jun 19;33(25):10453-8. doi: 10.1523/JNEUROSCI.5875-12.2013.
5
Glutamate-dependent translational control in cultured Bergmann glia cells: eIF2α phosphorylation.
Neurochem Res. 2013 Jul;38(7):1324-32. doi: 10.1007/s11064-013-1024-1. Epub 2013 Mar 28.
9
Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells.
ASN Neuro. 2012 Aug 16;4(5):e00095. doi: 10.1042/AN20120022.
10
CaMKII regulation in information processing and storage.
Trends Neurosci. 2012 Oct;35(10):607-18. doi: 10.1016/j.tins.2012.05.003. Epub 2012 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验