Revuelta María V, van Kan Jan A L, Kay John, Ten Have Arjen
Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
Laboratory of Phytopathology, Wageningen University, The Netherlands.
Genome Biol Evol. 2014 Jun;6(6):1480-94. doi: 10.1093/gbe/evu110.
The A1 family of eukaryotic aspartic proteinases (APs) forms one of the 16 AP families. Although one of the best characterized families, the recent increase in genome sequence data has revealed many fungal AP homologs with novel sequence characteristics. This study was performed to explore the fungal AP sequence space and to obtain an in-depth understanding of fungal AP evolution. Using a comprehensive phylogeny of approximately 700 AP sequences from the complete proteomes of 87 fungi and 20 nonfungal eukaryotes, 11 major clades of APs were defined of which clade I largely corresponds to the A1A subfamily of pepsin-archetype APs. Clade II largely corresponds to the A1B subfamily of nepenthesin-archetype APs. Remarkably, the nine other clades contain only fungal APs, thus indicating that fungal APs have undergone a large sequence diversification. The topology of the tree indicates that fungal APs have been subject to both "birth and death" evolution and "functional redundancy and diversification." This is substantiated by coclustering of certain functional sequence characteristics. A meta-analysis toward the identification of Cluster Determining Positions (CDPs) was performed in order to investigate the structural and biochemical basis for diversification. Seven CDPs contribute to the secondary structure of the enzyme. Three other CDPs are found in the vicinity of the substrate binding cleft. Tree topology, the large sequence variation among fungal APs, and the apparent functional diversification suggest that an amendment to update the current A1 AP classification based on a comprehensive phylogenetic clustering might contribute to refinement of the classification in the MEROPS peptidase database.
真核天冬氨酸蛋白酶(APs)的A1家族是16个AP家族之一。尽管是特征最明显的家族之一,但最近基因组序列数据的增加揭示了许多具有新序列特征的真菌AP同源物。进行这项研究是为了探索真菌AP的序列空间,并深入了解真菌AP的进化。利用来自87种真菌和20种非真菌真核生物完整蛋白质组的约700个AP序列构建的综合系统发育树,定义了11个主要的AP进化枝,其中进化枝I很大程度上对应于胃蛋白酶原型APs的A1A亚家族。进化枝II很大程度上对应于猪笼草蛋白酶原型APs的A1B亚家族。值得注意的是,其他九个进化枝仅包含真菌APs,这表明真菌APs经历了大量的序列多样化。树的拓扑结构表明,真菌APs经历了“生死”进化和“功能冗余与多样化”。某些功能序列特征的共聚类证实了这一点。为了研究多样化的结构和生化基础,对确定聚类位置(CDPs)进行了荟萃分析。七个CDP对酶的二级结构有贡献。另外三个CDP位于底物结合裂隙附近。树的拓扑结构、真菌APs之间的大量序列变异以及明显的功能多样化表明,基于全面系统发育聚类对当前A1 AP分类进行更新的修正可能有助于完善MEROPS肽酶数据库中的分类。