Suppr超能文献

罕见病中的候选基因发现与优先级排序。

Candidate gene discovery and prioritization in rare diseases.

作者信息

Jegga Anil G

机构信息

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7024, Cincinnati, OH, 45229, USA,

出版信息

Methods Mol Biol. 2014;1168:295-312. doi: 10.1007/978-1-4939-0847-9_17.

Abstract

A rare or orphan disorder is any disease that affects a small percentage of the population. Most genes and pathways underlying these disorders remain unknown. High-throughput techniques are frequently applied to detect disease candidate genes. The speed and affordability of sequencing following recent technological advances while advantageous are accompanied by the problem of data deluge. Furthermore, experimental validation of disease candidate genes is both time-consuming and expensive. Therefore, several computational approaches have been developed to identify the most promising candidates for follow-up studies. Based on the guilt by association principle, most of these approaches use prior knowledge about a disease of interest to discover and rank novel candidate genes. In this chapter, a brief overview of some of the in silico strategies for candidate gene prioritization is provided. To demonstrate their utility in rare disease research, a Web-based computational suite of tools that use integrated heterogeneous data sources for ranking disease candidate genes is used to demonstrate how to run typical queries using this system.

摘要

罕见病或孤儿病是指影响人口比例较小的任何疾病。这些疾病背后的大多数基因和通路仍不为人知。高通量技术经常被用于检测疾病候选基因。近期技术进步带来的测序速度和可承受性虽具有优势,但也伴随着数据泛滥的问题。此外,疾病候选基因的实验验证既耗时又昂贵。因此,已经开发了几种计算方法来识别最有前景的候选基因以供后续研究。基于关联有罪原则,这些方法大多利用关于感兴趣疾病的先验知识来发现新的候选基因并对其进行排名。在本章中,将简要概述一些用于候选基因优先级排序的计算机策略。为了证明它们在罕见病研究中的效用,使用了一套基于网络的计算工具,该工具使用整合的异构数据源对疾病候选基因进行排名,以演示如何使用该系统运行典型查询。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验