Moreno Navas Juan, Miller Peter I, Henry Lea-Anne, Hennige Sebastian J, Roberts J Murray
Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom.
Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom; Center for Marine Science, University of North Carolina, Wilmington, North Carolina, United States of America; Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom.
PLoS One. 2014 May 29;9(5):e98218. doi: 10.1371/journal.pone.0098218. eCollection 2014.
Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.
生态水动力学研究不同时空尺度下生态系统所面临的水动力约束。生态水动力学在海洋生态系统的结构和功能中起着关键作用,然而,对于沿海区域以外的深水生态系统,缺乏综合的复杂水流模型阻碍了在这些环境中的进一步综合研究。我们提出了一个针对地球上生物多样性最为丰富的深水生态系统之一——冷水珊瑚礁的水动力模型。明古拉礁群(苏格兰西部)是由石珊瑚鹿角杯形珊瑚形成的近岸冷水珊瑚礁景观。我们利用卫星遥感应用单图像边缘检测和复合锋面图,来检测可能影响珊瑚和其他悬浮生物食物供应的海洋锋面和叶绿素a值峰值。我们还提出了一个高分辨率三维海洋模型,以纳入区域和局部海洋学的显著特征。利用现场流速、流向和海平面数据进行的模型验证证实了该模型对礁群环流时空特征的真实再现,包括潮汐驱动的水流状态、涡流和下沉现象。这种在深水生态系统中三维水动力建模与遥感的新颖结合,增进了我们对海洋系统中生态过程时空尺度的理解。建模信息已被整合到一个三维地理信息系统中,提供了一个用于可视化和查询结果的用户界面,使该模型能够得到更广泛的生态应用,并可为海洋生物多样性和保护应用提供有价值的输入。