Leung V Y F, Pijn D R M, Schlatter H, Torralbo-Campo L, La Rooij A L, Mulder G B, Naber J, Soudijn M L, Tauschinsky A, Abarbanel C, Hadad B, Golan E, Folman R, Spreeuw R J C
Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam, The Netherlands.
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
Rev Sci Instrum. 2014 May;85(5):053102. doi: 10.1063/1.4874005.
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
我们描述了一种用于在原子芯片上为超冷原子创建磁性微阱晶格的装置的制造和构建。该晶格由永磁薄膜的光刻图案定义。图案化的磁性薄膜原子芯片能够在很宽的长度尺度范围内实现多种捕获几何形状。我们展示了一种晶格常数为10μm的原子芯片,适用于利用高激发里德堡能级原子间相互作用进行量子信息科学实验。有源捕获区域包含具有正方形和六边形对称性的晶格区域,这两个区域在一个界面处相连。为了将超冷(87)Rb原子加载到微阱中,在原子芯片下方安装了一个由银箔切割而成的宏观导线结构。我们展示了原子同时加载到正方形和六边形晶格部分的情况,并展示了单个晶格位点的分辨成像。原子芯片上的磁性薄膜晶格为超冷原子实验提供了一个通用平台,特别是对于量子信息科学和量子模拟。