Department of Chemistry, The College of Staten Island, and The Graduate Center, The City University of New York, Staten Island, NY 10314, USA.
Nanoscale. 2014 Jul 7;6(13):7443-52. doi: 10.1039/c4nr01030b.
Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.
荧光碳纳米粒子(FCNPs)已成功固定在聚(N-异丙基丙烯酰胺-co-丙烯酰胺)[聚(NIPAM-AAm)]纳米凝胶中,这是基于在水中通过一锅沉淀共聚将 NIPAM 单体与氢键 FCNP-AAm 复合单体进行共聚。所得的聚(NIPAM-AAm)-FCNP 杂化纳米凝胶可以结合每个构建块的功能,用于荧光温度传感、细胞成像和近红外(NIR)光响应药物输送。杂化纳米凝胶中的 FCNPs 不仅发出明亮且稳定的光致发光(PL),并表现出上转换 PL 特性,而且还增加了纳米凝胶对姜黄素药物分子的负载能力。聚(NIPAM-AAm)纳米凝胶的可逆热响应溶胀/收缩转变不仅可以修饰 FCNPs 的物理化学环境,以操纵 PL 强度来感测环境温度变化,还可以调节负载抗癌药物的释放速率。此外,嵌入纳米凝胶中的 FCNPs 可以将近红外光转换为热量,因此外源性近红外辐射可以进一步加速药物释放并增强治疗效果。杂化纳米凝胶可以克服细胞屏障进入细胞内区域,并在激光激发下点亮小鼠黑色素瘤 B16F10 细胞。展示的杂化纳米凝胶具有固定在响应性聚合物纳米凝胶中的无毒且光学活性的 FCNPs,有望为开发用于生物医学应用的新一代多功能材料做出贡献。