Suppr超能文献

5-羧基胞嘧啶的瞬时积累表明活性去甲基化参与神经干细胞的谱系特化。

Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells.

作者信息

Wheldon Lee M, Abakir Abdulkadir, Ferjentsik Zoltan, Dudnakova Tatiana, Strohbuecker Stephanie, Christie Denise, Dai Nan, Guan Shengxi, Foster Jeremy M, Corrêa Ivan R, Loose Matthew, Dixon James E, Sottile Virginie, Johnson Andrew D, Ruzov Alexey

机构信息

Medical Molecular Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.

Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

出版信息

Cell Rep. 2014 Jun 12;7(5):1353-1361. doi: 10.1016/j.celrep.2014.05.003. Epub 2014 May 29.

Abstract

5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and in vivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain.

摘要

5-甲基胞嘧啶(5mC)是一种表观遗传修饰,参与分化过程中基因活性的调控。Tet双加氧酶将5mC氧化为5-羟甲基胞嘧啶(5hmC)、5-甲酰基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC)。5fC和5caC均可被胸腺嘧啶-DNA糖基化酶(TDG)从DNA中切除,随后通过碱基切除修复途径再生未修饰的胞嘧啶。尽管有证据表明该机制在胚胎干细胞中起作用,但TDG依赖性去甲基化在分化和发育中的作用目前尚不清楚。在此,我们证明在植入后小鼠胚胎中发生了5hmC向5caC的广泛氧化。我们表明,5fC和5caC在培养的和体内的神经干细胞(NSC)谱系特化过程中短暂积累。此外,在NSC分化过程中,5caC在细胞类型特异性启动子处富集,并且TDG敲低导致分化中的NSC中5fC/5caC水平升高。我们的数据表明,主动去甲基化有助于表观遗传重编程,从而决定胚胎脑内的谱系特化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验