Dubini Romeo C A, Korytiaková Eva, Schinkel Thea, Heinrichs Pia, Carell Thomas, Rovó Petra
Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany.
ACS Phys Chem Au. 2022 May 25;2(3):237-246. doi: 10.1021/acsphyschemau.1c00050. Epub 2022 Feb 11.
5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10-20 kJ mol at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC's subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.
5-羧基胞嘧啶(5caC)是一种在所有生命域的核酸中都能找到的罕见表观遗传修饰。尽管其在基因组中的丰度很低,但推测5caC在DNA的转录、维持和碱基切除过程中发挥着重要的调节作用。在这项工作中,我们利用核磁共振(NMR)光谱来研究在多种pH和温度条件下,5caC掺入到标准DNA链中的影响。我们的结果表明,5caC对双链DNA具有pH依赖性的全局去稳定作用以及增强碱基对流动性的局部影响,尽管对基态B-DNA结构没有任何可检测到的影响。对含5caC的DNA双链体杂交热力学和动力学的测量突出了酸性环境(pH 5.8和4.7)在37°C时如何使双链结构相对于中性pH下的同一样本去稳定约10 - 20 kJ/mol。5caC的质子化导致解离过程的活化能降低,退火的障碍增加。在微秒时间尺度上对构象交换的研究揭示了一种高度局部化的碱基对运动,仅涉及修饰位点及其紧邻区域。通过与标准链和5-甲酰基胞嘧啶(5fC)编辑链的直接比较,我们能够研究基因组中两种最氧化的天然存在的胞嘧啶衍生物的影响。这些关于5caC对酸性pH的微妙敏感性的见解有助于解决长期存在的问题,即其作为碱基切除修复过程中底物的能力以及作为独立、稳定的表观遗传标记的作用。