Jaeger Johannes, Monk Nick
EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
School of Mathematics and Statistics, and Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield, UK.
J Physiol. 2014 Jun 1;592(11):2267-81. doi: 10.1113/jphysiol.2014.272385.
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection.
在本文中,我们阐述了动力系统理论如何能够为生物调节系统的进化提供一个统一的概念框架。我们的观点是,基因型 - 表型图谱可以通过潜在调节过程的相图来表征。该相图的特征——诸如具有相关吸引域的吸引子及其分岔——定义了一个系统的调节和进化潜力。我们展示了相空间的几何分析如何将沃丁顿的表观遗传景观与网络进化中研究稳健性和可进化性的最新计算方法联系起来。我们讨论了相空间的几何结构如何决定可能的表型转变的概率。最后,我们展示了如何从动力系统概念的角度理解环境在表型进化中积极的、自组织的作用。这种方法产生的机制性解释超越了仅基于对进化调节网络进行模拟所获得的见解。现在可以通过使用现代系统生物学工具研究特定的、实验上易于处理的调节系统来检验其预测。对这类系统进行系统的探索将使我们能够更好地理解表型变异性的本质和起源,而表型变异性为自然选择驱动的进化提供了基础。