Suppr超能文献

基于通路驱动发现罕见突变对癌症的影响。

Pathway-driven discovery of rare mutational impact on cancer.

作者信息

Ahn TaeJin, Park Taesung

机构信息

Interdisciplinary Program in Bioinformatics, Seoul National University, San 56-1, Shilim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea ; Samsung Genome Institute, Samsung Medical Center, Irwon-ro 81, Seoul 136-710, Republic of Korea.

Interdisciplinary Program in Bioinformatics, Seoul National University, San 56-1, Shilim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea ; Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea.

出版信息

Biomed Res Int. 2014;2014:171892. doi: 10.1155/2014/171892. Epub 2014 May 4.

Abstract

Identifying driver mutation is important in understanding disease mechanism and future application of custom tailored therapeutic decision. Functional analysis of mutational impact usually focuses on the gene expression level of the mutated gene itself. However, complex regulatory network may cause differential gene expression among functional neighbors of the mutated gene. We suggest a new approach for discovering rare mutations that have real impact in the context of pathway; the philosophy of our method is iteratively combining rare mutations until no more mutations can be added under the condition that the combined mutational event can statistically discriminate pathway level mRNA expression between groups with and without mutational events. Breast cancer patients with somatic mutation and mRNA expression were analyzed by our approach. Our approach is shown to sensitively capture mutations that change pathway level mRNA expression, concurrently discovering important mutations previously reported in breast cancer such as TP53, PIK3CA, and RB1. In addition, out of 15,819 genes considered in breast cancer, our approach identified mutational events of 32 genes showing pathway level mRNA expression differences.

摘要

识别驱动突变对于理解疾病机制以及未来定制化治疗决策的应用至关重要。突变影响的功能分析通常聚焦于突变基因本身的基因表达水平。然而,复杂的调控网络可能导致突变基因的功能邻域之间出现差异基因表达。我们提出了一种新方法,用于发现那些在通路背景下具有实际影响的罕见突变;我们方法的理念是迭代合并罕见突变,直到在合并的突变事件能够在统计学上区分有和没有突变事件的组之间的通路水平mRNA表达的条件下,无法再添加更多突变。我们用这种方法分析了患有体细胞突变和mRNA表达的乳腺癌患者。我们的方法被证明能够灵敏地捕捉到改变通路水平mRNA表达的突变,同时发现先前在乳腺癌中报道的重要突变,如TP53、PIK3CA和RB1。此外,在乳腺癌中考虑的15819个基因中

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ee4/4026869/2dd06ddab82c/BMRI2014-171892.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验