Suppr超能文献

用于具有维护活动的混合流水车间调度问题的混合粒子群优化算法

Hybrid particle swarm optimization for hybrid flowshop scheduling problem with maintenance activities.

作者信息

Li Jun-qing, Pan Quan-ke, Mao Kun

机构信息

State Key Laboratory of Synthetic Automation for Process Industries, Northeastern University, Shenyang 110819, China ; College of Computer Science, Liaocheng University, Liaocheng 252059, China.

State Key Laboratory of Synthetic Automation for Process Industries, Northeastern University, Shenyang 110819, China.

出版信息

ScientificWorldJournal. 2014;2014:596850. doi: 10.1155/2014/596850. Epub 2014 Apr 29.

Abstract

A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.

摘要

提出了一种结合粒子群优化(PSO)和迭代局部搜索(ILS)的混合算法,用于解决具有预防性维护(PM)活动的混合流水车间调度(HFS)问题。在所提出的算法中,研究了不同的交叉算子和变异算子。此外,还开发了一种高效的多重插入变异算子,以增强算法的搜索能力。此外,基于ILS的局部搜索过程被嵌入到算法中,以提高所提出算法的开发能力。对标准PSO的详细实验参数进行了调整。在所提出的算法在77个Carlier和Néron基准问题的变体上进行了测试。与当前高效算法(包括hGA、ILS、PSO和IG)的详细比较验证了所提出算法的效率和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5942/4032694/0a4adf36acf4/TSWJ2014-596850.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验