Li Jun-qing, Pan Quan-ke, Mao Kun
State Key Laboratory of Synthetic Automation for Process Industries, Northeastern University, Shenyang 110819, China ; College of Computer Science, Liaocheng University, Liaocheng 252059, China.
State Key Laboratory of Synthetic Automation for Process Industries, Northeastern University, Shenyang 110819, China.
ScientificWorldJournal. 2014;2014:596850. doi: 10.1155/2014/596850. Epub 2014 Apr 29.
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.
提出了一种结合粒子群优化(PSO)和迭代局部搜索(ILS)的混合算法,用于解决具有预防性维护(PM)活动的混合流水车间调度(HFS)问题。在所提出的算法中,研究了不同的交叉算子和变异算子。此外,还开发了一种高效的多重插入变异算子,以增强算法的搜索能力。此外,基于ILS的局部搜索过程被嵌入到算法中,以提高所提出算法的开发能力。对标准PSO的详细实验参数进行了调整。在所提出的算法在77个Carlier和Néron基准问题的变体上进行了测试。与当前高效算法(包括hGA、ILS、PSO和IG)的详细比较验证了所提出算法的效率和有效性。