Suppr超能文献

一种基于粒子群优化算法的混合元启发式算法求解置换流水车间调度问题

A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.

作者信息

Zhang Le, Wu Jinnan

机构信息

School of Information Engineering, Shenyang University, Shenyang 110044, China ; School of Information Science and Technology, Tsinghua University, Beijing 100084, China.

School of Information Engineering, Shenyang University, Shenyang 110044, China.

出版信息

ScientificWorldJournal. 2014 Jan 29;2014:902950. doi: 10.1155/2014/902950. eCollection 2014.

Abstract

This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

摘要

本文研究了以最小化完工时间和总流程时间为目标的置换流水车间调度问题(PFSP),并提出了一种基于粒子群优化(PSO)的混合元启发式算法。为了增强混合元启发式算法的探索能力,引入了一种与随机可变邻域搜索相结合的模拟退火算法。为了提高混合元启发式算法的搜索多样性,提出了一种基于路径重连的解替换策略,以替换陷入局部最优的粒子。在基准实例上的计算结果表明,所提出的基于PSO的混合元启发式算法与文献中其他强大的元启发式算法具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1685/3928865/413bccc91cd4/TSWJ2014-902950.alg.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验