Bell Neil E, Boore Jeffrey L, Mishler Brent D, Hyvönen Jaakko
Botanical Museum, Finnish Museum of Natural History, University of Helsinki, PO Box 7, FI-00014 Helsinki, Finland.
BMC Genomics. 2014 May 19;15(1):383. doi: 10.1186/1471-2164-15-383.
Mosses are the largest of the three extant clades of gametophyte-dominant land plants and remain poorly studied using comparative genomic methods. Major monophyletic moss lineages are characterised by different types of a spore dehiscence apparatus called the peristome, and the most important unsolved problem in higher-level moss systematics is the branching order of these peristomate clades. Organellar genome sequencing offers the potential to resolve this issue through the provision of both genomic structural characters and a greatly increased quantity of nucleotide substitution characters, as well as to elucidate organellar evolution in mosses. We publish and describe the chloroplast and mitochondrial genomes of Tetraphis pellucida, representative of the most phylogenetically intractable and morphologically isolated peristomate lineage.
Assembly of reads from Illumina SBS and Pacific Biosciences RS sequencing reveals that the Tetraphis chloroplast genome comprises 127,489 bp and the mitochondrial genome 107,730 bp. Although genomic structures are similar to those of the small number of other known moss organellar genomes, the chloroplast lacks the petN gene (in common with Tortula ruralis) and the mitochondrion has only a non-functional pseudogenised remnant of nad7 (uniquely amongst known moss chondromes).
Structural genomic features exist with the potential to be informative for phylogenetic relationships amongst the peristomate moss lineages, and thus organellar genome sequences are urgently required for exemplars from other clades. The unique genomic and morphological features of Tetraphis confirm its importance for resolving one of the major questions in land plant phylogeny and for understanding the evolution of the peristome, a likely key innovation underlying the diversity of mosses. The functional loss of nad7 from the chondrome is now shown to have occurred independently in all three bryophyte clades as well as in the early-diverging tracheophyte Huperzia squarrosa.
苔藓是现存三个以配子体为主的陆地植物进化枝中最大的一个,利用比较基因组方法对其研究仍然不足。主要的苔藓单系类群以一种称为齿舌的不同类型的孢子开裂装置为特征,而苔藓高级系统发育中最重要的未解决问题是这些具齿舌类群的分支顺序。细胞器基因组测序有潜力通过提供基因组结构特征和大量增加的核苷酸替代特征来解决这个问题,同时也有助于阐明苔藓细胞器的进化。我们发表并描述了透明四齿藓的叶绿体和线粒体基因组,它代表了系统发育上最难处理且形态上孤立的具齿舌谱系。
对来自Illumina SBS和Pacific Biosciences RS测序的读数进行组装后发现,透明四齿藓的叶绿体基因组包含127,489 bp,线粒体基因组包含107,730 bp。虽然基因组结构与其他少数已知的苔藓细胞器基因组相似,但叶绿体缺少petN基因(与土生墙藓相同),线粒体只有一个无功能的nad7假基因残余(在已知的苔藓线粒体基因组中独一无二)。
存在一些结构基因组特征,有可能为具齿舌苔藓谱系之间的系统发育关系提供信息,因此迫切需要其他类群的范例的细胞器基因组序列。透明四齿藓独特的基因组和形态特征证实了它对于解决陆地植物系统发育中的一个主要问题以及理解齿舌的进化的重要性,齿舌可能是苔藓多样性背后的一个关键创新。现已表明,线粒体基因组中nad7的功能丧失在所有三个苔藓植物进化枝以及早期分化的维管植物蛇足石杉中都是独立发生的。