State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
Small. 2014 Sep 24;10(18):3775-82. doi: 10.1002/smll.201303489. Epub 2014 May 30.
A facile method is proposed to assemble graphene oxide (GO) on the surface of a TiO2 nanobelt followed by an in situ photocatalytic reduction to form reduced graphene oxide (rGO)/TiO2 nanobelt surface heterostructures. The special colloidal properties of GO and TiO2 nanobelt are exploited as well as the photocatalytic properties of TiO2 . Using water-ethanol solvent mixtures, GO nanosheets are tightly wrapped around the surface of the TiO2 nanobelts through an aggregation process and are then reduced in situ under UV-light irradiation to form rGO/TiO2 nanobelt surface heterostructures. The heterostructures enhance the separation of the photoinduced carriers, which results in a higher photocurrent due to the special electronic characteristics of rGO. Compared to TiO2 nanobelts, the rGO/TiO2 nanobelt surface heterostructures possess higher photocatalytic activity for the degradation of methyl orange and for the production of hydrogen from water, as well as excellent recyclability, with no loss of activity over five cycles.
提出了一种简便的方法,可将氧化石墨烯(GO)组装在 TiO2 纳米带表面上,然后通过原位光催化还原形成还原氧化石墨烯(rGO)/TiO2 纳米带表面异质结构。充分利用了 GO 和 TiO2 纳米带的特殊胶体性质以及 TiO2 的光催化性质。使用水-乙醇溶剂混合物,通过聚集过程将 GO 纳米片紧密包裹在 TiO2 纳米带表面上,然后在紫外光照射下原位还原形成 rGO/TiO2 纳米带表面异质结构。这种异质结构增强了光致载流子的分离,由于 rGO 的特殊电子特性,导致光电流更高。与 TiO2 纳米带相比,rGO/TiO2 纳米带表面异质结构在降解甲基橙和从水中产生氢气方面表现出更高的光催化活性,并且具有出色的可循环性,在五个循环中没有活性损失。