Suppr超能文献

神经胶质前体细胞作为胶质瘤转化的靶点。

Glial progenitors as targets for transformation in glioma.

作者信息

Ilkhanizadeh Shirin, Lau Jasmine, Huang Miller, Foster Daniel J, Wong Robyn, Frantz Aaron, Wang Susan, Weiss William A, Persson Anders I

机构信息

Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA.

Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA.

出版信息

Adv Cancer Res. 2014;121:1-65. doi: 10.1016/B978-0-12-800249-0.00001-9.

Abstract

Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system. Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomagenesis. OPCs can give rise to gliomas, with signaling pathways associated with NSCs also playing key roles during OPC lineage development. Gliomas can also undergo a switch from progenitor- to stem-like phenotype after therapy, consistent with an OPC-origin even for stem-like gliomas. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues.

摘要

胶质瘤是最常见的原发性恶性脑肿瘤,可发生于整个中枢神经系统。最近对胶质瘤干细胞样细胞的关注表明,神经干细胞(NSCs),一种局限于生发区的少量前体细胞群,可能是胶质瘤的潜在来源。在这篇综述中,我们聚焦于少突胶质前体细胞(OPCs),即出生后脑内数量最多的循环神经胶质前体细胞群,与胶质瘤发生之间的关系。OPCs可引发胶质瘤,与神经干细胞相关的信号通路在OPC谱系发育过程中也起着关键作用。胶质瘤在治疗后也可从祖细胞样表型转变为干细胞样表型,这表明即使是干细胞样胶质瘤也起源于OPCs。未来对OPC生物学的深入研究可能会揭示OPC源性胶质瘤的病因,并揭示新的治疗途径。

相似文献

1
Glial progenitors as targets for transformation in glioma.
Adv Cancer Res. 2014;121:1-65. doi: 10.1016/B978-0-12-800249-0.00001-9.
3
Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis.
Cell Stem Cell. 2019 May 2;24(5):707-723.e8. doi: 10.1016/j.stem.2019.03.006. Epub 2019 Apr 11.
4
Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4214-23. doi: 10.1073/pnas.1414389111. Epub 2014 Sep 22.
5
The SVZ and Its Relationship to Stem Cell Based Neuro-oncogenesis.
Adv Exp Med Biol. 2015;853:23-32. doi: 10.1007/978-3-319-16537-0_2.
6
The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation.
Oncotarget. 2017 Jul 18;8(29):47206-47215. doi: 10.18632/oncotarget.17589.
7
In vitro identification and functional characterization of glial precursor cells in human gliomas.
Neuropathol Appl Neurobiol. 2006 Apr;32(2):189-202. doi: 10.1111/j.1365-2990.2006.00740.x.
8
p53 and NF 1 loss plays distinct but complementary roles in glioma initiation and progression.
Glia. 2018 May;66(5):999-1015. doi: 10.1002/glia.23297. Epub 2018 Feb 2.
9
Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology.
J Child Neurol. 2003 Dec;18(12):851-66; discussion 867. doi: 10.1177/088307380301801205.

引用本文的文献

2
EZH2 Inhibition Sensitizes IDH1R132H-Mutant Gliomas to Histone Deacetylase Inhibitor.
Cells. 2024 Jan 25;13(3):219. doi: 10.3390/cells13030219.
3
Current state of immune checkpoints therapy for glioblastoma.
Heliyon. 2024 Jan 13;10(2):e24729. doi: 10.1016/j.heliyon.2024.e24729. eCollection 2024 Jan 30.
4
Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective.
Cell. 2024 Jan 18;187(2):446-463.e16. doi: 10.1016/j.cell.2023.12.013.
5
O-GlcNAcylation: A Crucial Regulator in Cancer-Associated Biological Events.
Cell Biochem Biophys. 2023 Sep;81(3):383-394. doi: 10.1007/s12013-023-01146-z. Epub 2023 Jul 1.
8
Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: a review of the literature.
Clin Epigenetics. 2022 Aug 1;14(1):98. doi: 10.1186/s13148-022-01305-8.
9
Immune Gene Signatures and Immunotypes in Immune Microenvironment Are Associated With Glioma Prognose.
Front Immunol. 2022 Apr 14;13:823910. doi: 10.3389/fimmu.2022.823910. eCollection 2022.

本文引用的文献

1
Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance.
Cancer Treat Rev. 2014 Apr;40(3):341-8. doi: 10.1016/j.ctrv.2013.09.008. Epub 2013 Sep 15.
2
CSF-1R inhibition alters macrophage polarization and blocks glioma progression.
Nat Med. 2013 Oct;19(10):1264-72. doi: 10.1038/nm.3337. Epub 2013 Sep 22.
4
Non-invasive in vivo assessment of IDH1 mutational status in glioma.
Nat Commun. 2013;4:2429. doi: 10.1038/ncomms3429.
5
NG2 cells in white matter but not gray matter proliferate in response to PDGF.
J Neurosci. 2013 Sep 4;33(36):14558-66. doi: 10.1523/JNEUROSCI.2001-12.2013.
6
Proneural genes in neocortical development.
Neuroscience. 2013 Dec 3;253:256-73. doi: 10.1016/j.neuroscience.2013.08.029. Epub 2013 Aug 30.
7
Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.
Nat Neurosci. 2013 Oct;16(10):1373-82. doi: 10.1038/nn.3510. Epub 2013 Sep 1.
8
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Cancer Cell. 2013 Sep 9;24(3):331-46. doi: 10.1016/j.ccr.2013.08.001. Epub 2013 Aug 29.
10
Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML.
Blood. 2013 Oct 17;122(16):2877-87. doi: 10.1182/blood-2013-03-491571. Epub 2013 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验