Suppr超能文献

基于高速图形处理器的全三维扩散光学层析成像系统。

High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System.

作者信息

Saikia Manob Jyoti, Kanhirodan Rajan, Mohan Vasu Ram

机构信息

Department of Physics, Indian Institute of Science, Bangalore 560012, India.

Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India.

出版信息

Int J Biomed Imaging. 2014;2014:376456. doi: 10.1155/2014/376456. Epub 2014 Apr 10.

Abstract

We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.

摘要

我们开发了一种基于图形处理器单元(GPU)的用于扩散光学断层扫描(DOT)的高速全3D系统。对于严重不适定问题的3D DOT算法,通过使用以下方法实现了执行时间的减少:(1)一种算法改进,即使用布罗伊登方法更新雅可比矩阵,从而更新参数矩阵;(2)多节点多线程GPU和CUDA(计算统一设备架构)软件架构。本研究开发了两种不同的DOT程序的GPU实现方式:(1)通过GPU CUDA和CULA例程增强的传统C语言程序(C GPU);(2)由用于GPU的MATLAB并行计算工具包支持的MATLAB程序(MATLAB GPU)。给出了C和Matlab实现方式下算法在主机CPU和GPU系统上的计算时间。正向计算使用有限元方法(FEM),问题域被离散为14610、30823和66514个四面体单元。对于基于C的GPU程序进行双平面测量时,14610个单元的DOT重建一次迭代所实现的重建时间为0.52秒。相应的基于MATLAB的GPU程序耗时为秒。如此实现的最大重建帧数为每秒2帧。 0.86

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d24/4003791/746028ef653a/IJBI2014-376456.001.jpg

相似文献

1
High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System.
Int J Biomed Imaging. 2014;2014:376456. doi: 10.1155/2014/376456. Epub 2014 Apr 10.
2
Optimizing photoacoustic image reconstruction using cross-platform parallel computation.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):2. doi: 10.1186/s42492-018-0002-5. eCollection 2018 Dec.
4
Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
Med Phys. 2011 Dec;38(12):6775-86. doi: 10.1118/1.3661998.
6
Multi-GPU Jacobian accelerated computing for soft-field tomography.
Physiol Meas. 2012 Oct;33(10):1703-15. doi: 10.1088/0967-3334/33/10/1703. Epub 2012 Sep 26.
8
Fast 2-D ultrasound strain imaging: the benefits of using a GPU.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):207-13. doi: 10.1109/TUFFC.2014.6689790.
9
Accelerated gradient based diffuse optical tomographic image reconstruction.
Med Phys. 2011 Jan;38(1):539-47. doi: 10.1118/1.3531572.
10
Modeling of soft tissue thermal damage based on GPU acceleration.
Comput Assist Surg (Abingdon). 2019 Oct;24(sup1):5-12. doi: 10.1080/24699322.2018.1557891. Epub 2019 Jul 24.

引用本文的文献

1
Bioimaging Probes Based on Magneto-Fluorescent Nanoparticles.
Pharmaceutics. 2023 Feb 17;15(2):686. doi: 10.3390/pharmaceutics15020686.
2
The Validation of a Portable Functional NIRS System for Assessing Mental Workload.
Sensors (Basel). 2021 May 31;21(11):3810. doi: 10.3390/s21113810.

本文引用的文献

1
Practical fully three-dimensional reconstruction algorithms for diffuse optical tomography.
J Opt Soc Am A Opt Image Sci Vis. 2012 Jun 1;29(6):1017-26. doi: 10.1364/JOSAA.29.001017.
2
High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.
Biomed Opt Express. 2011 Nov 1;2(11):3207-22. doi: 10.1364/BOE.2.003207. Epub 2011 Oct 28.
3
GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography.
Int J Biomed Imaging. 2011;2011:403892. doi: 10.1155/2011/403892. Epub 2011 Oct 16.
4
Accelerated gradient based diffuse optical tomographic image reconstruction.
Med Phys. 2011 Jan;38(1):539-47. doi: 10.1118/1.3531572.
6
Photon-measurement density functions. Part I: Analytical forms.
Appl Opt. 1995 Nov 1;34(31):7395-409. doi: 10.1364/AO.34.007395.
7
Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit.
J Biomed Opt. 2010 Sep-Oct;15(5):055007. doi: 10.1117/1.3495729.
9
Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging.
Neuroimage. 2010 Jan 1;49(1):568-77. doi: 10.1016/j.neuroimage.2009.07.023. Epub 2009 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验