Grella Konstantin
Seminar for Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland.
Springerplus. 2014 May 7;3:230. doi: 10.1186/2193-1801-3-230. eCollection 2014.
We develop, analyze, and test a sparse tensor product phase space Galerkin discretization framework for the stationary monochromatic radiative transfer problem with scattering. The mathematical model describes the transport of radiation on a phase space of the Cartesian product of a typically three-dimensional physical domain and two-dimensional angular domain. Known solution methods such as the discrete ordinates method and a spherical harmonics method are derived from the presented Galerkin framework. We construct sparse versions of these well-established methods from the framework and prove that these sparse tensor discretizations break the "curse of dimensionality": essentially (up to logarithmic factors in the total number of degrees of freedom) the solution complexity increases only as in a problem posed in the physical domain alone, while asymptotic convergence orders in terms of the discretization parameters remain essentially equal to those of a full tensor phase space Galerkin discretization. Algorithmically we compute the sparse tensor approximations by the combination technique. In numerical experiments on 2+1 and 3+2 dimensional phase spaces we demonstrate that the advantages of sparse tensorization can be leveraged in applications.
2010 MATHEMATICS SUBJECT CLASSIFICATION: 35Q79; 65N12; 65N30; 65N35.
我们针对具有散射的稳态单色辐射传输问题,开发、分析并测试了一种稀疏张量积相空间伽辽金离散化框架。该数学模型描述了辐射在一个通常为三维物理域与二维角域的笛卡尔积的相空间上的传输。诸如离散坐标法和球谐函数法等已知求解方法可从所提出的伽辽金框架推导得出。我们从该框架构建这些成熟方法的稀疏版本,并证明这些稀疏张量离散化打破了“维度诅咒”:本质上(在自由度总数的对数因子范围内),求解复杂度仅如同仅在物理域中提出的问题那样增加,而在离散化参数方面的渐近收敛阶基本保持与全张量相空间伽辽金离散化的相同。在算法上,我们通过组合技术计算稀疏张量近似。在二维加一维和三维加二维相空间的数值实验中,我们证明了在应用中可以利用稀疏张量化的优势。
2010数学学科分类:35Q79;65N12;65N30;65N35。