Université de Lyon , F-69000, Lyon, France.
Environ Sci Technol. 2014 Jul 1;48(13):7544-51. doi: 10.1021/es502009r. Epub 2014 Jun 10.
Reproduction data collected through standard bioassays are classically analyzed by regression in order to fit exposure-response curves and estimate ECx values (x% effective concentration). But regression is often misused on such data, ignoring statistical issues related to (i) the special nature of reproduction data (count data), (ii) a potential inter-replicate variability, and (iii) a possible concomitant mortality. This paper offers new insights in dealing with those issues. Concerning mortality, particular attention was paid not to waste any valuable data-by dropping all the replicates with mortality-or to bias ECx values. For that purpose we defined a new covariate summing the observation periods during which each individual contributes to the reproduction process. This covariate was then used to quantify reproduction-for each replicate at each concentration-as a number of offspring per individual-day. We formulated three exposure-response models differing by their stochastic part. Those models were fitted to four data sets and compared using a Bayesian framework. The individual-day unit proved to be a suitable approach to use all the available data and prevent bias in the estimation of ECx values. Furthermore, a nonclassical negative-binomial model was shown to correctly describe the inter-replicate variability observed in the studied data sets.
通过标准生物测定收集的繁殖数据通常通过回归进行分析,以便拟合暴露-反应曲线并估计 ECx 值(x%有效浓度)。但是,回归在这种数据上经常被误用,忽略了与以下因素相关的统计问题:(i)繁殖数据(计数数据)的特殊性质,(ii)潜在的重复间变异性,以及(iii)可能同时存在的死亡率。本文提供了处理这些问题的新见解。关于死亡率,特别注意不要浪费任何有价值的数据-通过丢弃所有具有死亡率的重复-或偏置 ECx 值。为此,我们定义了一个新的协变量,该协变量汇总了每个个体对繁殖过程做出贡献的观察期。然后,该协变量用于量化每个浓度下每个重复的繁殖情况-每个个体每天的后代数量。我们提出了三种不同随机部分的暴露-反应模型。使用贝叶斯框架对这些模型进行了拟合,并进行了比较。个体日单位被证明是一种合适的方法,可以利用所有可用的数据,并防止 ECx 值估计中的偏差。此外,还表明,非经典的负二项式模型可以正确描述研究数据集观察到的重复间变异性。