Suppr超能文献

呼吸补偿系统:设计与性能评估。

A respiratory compensating system: design and performance evaluation.

机构信息

National Taipei University of Technology.

出版信息

J Appl Clin Med Phys. 2014 May 8;15(3):4710. doi: 10.1120/jacmp.v15i3.4710.

Abstract

This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory signals, the average dose (%) in the target area is improved by 31.8% ~ 67.7%, and improved in the 95% isodose area by 15.3% ~ 86.4% (the above rates of improvements will increase with increasing respiratory motion displacement) after compensation. The experimental results from the second method suggested that about 67.3% ~ 82.5% displacement can be offset. In addition, gamma passing rate after compensation can be improved to 100% only when the displacement of the respiratory motion is within 10 ~ 30 mm. This study proves that the proposed system can contribute to the compensation of organ displacement caused by respiratory motion, enabling physicians to use lower doses and smaller field sizes in the treatment of tumors of cancer patients.

摘要

本研究提出了一种呼吸补偿系统,该系统安装在治疗床的顶部,用于进行反向运动,与目标(膈肌和止血夹)的方向相反,以抵消呼吸运动引起的器官移位。传统上,在治疗癌症患者时,由于器官随呼吸运动而移动,医生必须增加肿瘤放射治疗的射野大小,这会导致辐射诱导的正常组织(危及器官(OAR))炎症,同时杀死癌细胞,从而降低患者的生活质量。本研究使用应变计作为呼吸信号采集装置来获取腹部呼吸信号,提出了呼吸模拟系统(RSS)和呼吸补偿系统,以实验如何抵消呼吸运动引起的器官位移和补偿效果。本研究使用两种方法验证呼吸补偿系统抵消目标位移的效果。第一种方法使用医用直线加速器(linac)在 EBT 胶片(GAFCHROMIC EBT 胶片)上照射 300cGy 剂量。第二种方法使用应变计捕获患者的呼吸信号,同时使用透视观察体内目标,如膈肌,以使呼吸补偿系统抵消目标在上下(SI)方向的位移。测试结果表明,RSS 的位置误差约为 0.451.42mm,而呼吸补偿系统的位置误差约为 0.481.42mm。从基于不同输入到 RSS 的 EBT 胶片轮廓来看,结果表明,当 RSS 的输入呼吸信号为正弦波信号时,目标区域的平均剂量(%)提高了 1.4%24.4%,补偿后 95%等剂量区提高了 15.3%76.9%。如果 RSS 输入的呼吸信号是实际的人体呼吸信号,则目标区域的平均剂量(%)提高了 31.8%67.7%,补偿后 95%等剂量区提高了 15.3%86.4%(上述提高率会随着呼吸运动位移的增加而增加)。第二种方法的实验结果表明,约 67.3%82.5%的位移可以得到补偿。此外,只有当呼吸运动的位移在 1030mm 范围内时,补偿后的伽马通过率才能提高到 100%。本研究证明,所提出的系统有助于补偿呼吸运动引起的器官位移,使医生能够在治疗癌症患者的肿瘤时使用较低的剂量和较小的射野。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f41/5711063/ef9e55f0a334/ACM2-15-307-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验