Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States.
Acc Chem Res. 2014 Jul 15;47(7):2212-21. doi: 10.1021/ar500147x. Epub 2014 Jun 3.
The advent of high-throughput screening (HTS) for chiral catalysts has encouraged the development of fast methods for determining enantiomeric excess (ee). Traditionally, chromatographic methods such as chiral HPLC have been used for ee determination in HTS. These methods, however, are not optimal because of high duty cycle. Their long analysis time results in a bottleneck in the HTS process. A more ideal method for HTS that requires less analysis time such as chiroptical methods are thus of interest. In this Account, we summarize our efforts to develop host-guest systems for ee determination. The first part includes our enantioselective indicator displacement assays (eIDAs), and the second part focuses on our circular dichroism based host-guest systems. Our first eIDA utilizes chiral boronic acid receptors, along with prescreened indicators, to determine ee for chiral α-hydroxyacids and vicinal diols with ±7% average error (AE). To further the practicality for this system, a HTS protocol was developed. Our second eIDA uses diamino chiral ligands and Cu(II) as the receptor for the ee determination of α-amino acids. The system reported ±12% AE, and a HTS protocol was developed for this system. Our first CD based host-guest system uses metal complexes composed of Cu(I) or Pd(II) with enantiopure 2,2'-diphenylphosphino-1,1'-binaphthyl (BINAP) as host to determine the ee of chiral vicinal diamines (±4% AE), primary amines (±17% AE), and cyclohexanones (±7% AE). Primary amines and cyclohexanones were derivatized to form chiral imines or chiral hydrazones to allow coordination with the metal complex. Upon coordination of chiral analytes, the metal-to-ligand (BINAP) charge transfer band was modulated, thus allowing the discrimination of chiral analytes. As an effort to improve the accuracy for chiral primary amine ee determination, a system with a host composed of o-formylphenyl boronic acid (FPBA) and enantiopure 1,1'-bi-2-naphthol (BINOL) was used to reduce the AE to ±5.8%. In the presence of amines, the FPBA-BINOL host forms an imine-coordinated boronic ester, thus affecting the CD signal of the boron complex. Another chiral primary amine ee determination system was developed with Fe(II) and 3-hydroxy-2-pyridinecarbaldehyde. The chiral imines, formed by the pyridinecarbaldehyde and chiral amines, would coordinate to the Fe(II) ion yielding exciton-coupled circular dichroism (ECCD) active metal complexes. This system was able to determine the ee of chiral amines with ±5% AE. Furthermore, this imine-Fe(II) complex system also successfully determined the ee of α-chiral aldehydes with ±5% AE. Other ECCD based hosts were subsequently developed; one with bisquinolylpyridylamine and Cu(II) for chiral carboxylates and amino acids and another multicomponent system with pyridine chromophores for chiral secondary alcohol ee determination. Both of the systems were able to determine ee of the chiral analytes with ±3% AE. Overall, our group has developed ee determining host-guest systems that target various functionalities. To date, we are able to determine the ee of vicinal diols, α-hydroxyacids, vicinal diamines, cyclohexanones, amines, α-chiral aldehydes, carboxylates, amino acids, and secondary alcohols with ±7% or lower average error. Future development will involve improving the average error and employing the current systems to analyze real-life samples resulting from parallel syntheses.
高通量筛选 (HTS) 技术的出现促进了手性催化剂的快速测定对映体过量 (ee) 的方法的发展。传统上,手性 HPLC 等色谱方法已用于 HTS 中的 ee 测定。然而,由于高工作周期,这些方法并不理想。它们的长分析时间导致 HTS 过程中的瓶颈。因此,需要更少分析时间的更理想的 HTS 方法,如圆二色法,引起了人们的兴趣。在本账目中,我们总结了开发用于 ee 测定的主体-客体体系的努力。第一部分包括我们的对映选择性指示剂置换测定法 (eIDAs),第二部分集中于我们的基于圆二色性的主体-客体体系。我们的第一个 eIDA 利用手性硼酸受体,以及预筛选的指示剂,用于测定手性 α-羟基酸和邻二醇的 ee,平均误差为 ±7%。为了进一步提高该系统的实用性,开发了 HTS 方案。我们的第二个 eIDA 使用二氨基手性配体和 Cu(II) 作为受体,用于测定 α-氨基酸的 ee。该系统报告的平均误差为 ±12%,并为该系统开发了 HTS 方案。我们的第一个基于 CD 的主体-客体体系使用由 Cu(I) 或 Pd(II) 与手性 2,2'-二苯基膦-1,1'-联萘 (BINAP) 组成的金属配合物作为主体,用于测定手性邻二胺的 ee(±4% AE)、伯胺(±17% AE)和环己酮(±7% AE)。伯胺和环己酮衍生形成手性亚胺或手性腙,以允许与金属配合物配位。在手性分析物配位后,金属-配体(BINAP)电荷转移带被调制,从而允许手性分析物的区分。为了提高手性伯胺 ee 测定的准确性,使用由邻甲酰基苯硼酸 (FPBA) 和手性 1,1'-联-2-萘酚 (BINOL) 组成的主体的系统,将平均误差降低至 ±5.8%。在存在胺的情况下,FPBA-BINOL 主体形成亚胺配位的硼酸酯,从而影响硼配合物的 CD 信号。开发了另一个用于测定手性伯胺 ee 的系统,使用 Fe(II) 和 3-羟基-2-吡啶甲醛。形成的手性亚胺,由吡啶甲醛和手性伯胺形成,将与 Fe(II) 离子配位,产生交换耦合圆二色性(ECCD)活性金属配合物。该系统能够以 ±5% AE 的平均误差测定手性伯胺的 ee。此外,该亚胺-Fe(II)配合物系统还成功地以 ±5% AE 测定了 α-手性醛的 ee。随后开发了其他 ECCD 基主体;一个用于手性羧酸酯和氨基酸的双喹啉基吡啶基胺和 Cu(II),另一个用于手性仲醇 ee 测定的具有吡啶生色团的多组分系统。这两个系统都能够以 ±3% AE 的平均误差测定手性分析物的 ee。总体而言,我们小组已经开发了针对各种功能的 ee 测定主体-客体体系。迄今为止,我们能够以 ±7% 或更低的平均误差测定邻二醇、α-羟基酸、邻二胺、环己酮、胺、α-手性醛、羧酸酯、氨基酸和仲醇的 ee。未来的发展将涉及提高平均误差,并利用当前的系统分析平行合成产生的实际样品。