Pandey Rahul, Spannuth Melissa, Conrad Jacinta C
Chemical and Biomolecular Engineering Department, University of Houston.
Chemical and Biomolecular Engineering Department, University of Houston;
J Vis Exp. 2014 May 20(87):51461. doi: 10.3791/51461.
The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly(1-3), drug delivery(4), improved hydrocarbon recovery(5-7), and flowable electrodes for energy storage(8). Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained(9). Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems(10). Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions(11-16,37). In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow.
具有吸引性颗粒间相互作用的受限胶体悬浮液的行为,对于定向组装材料(1 - 3)、药物递送(4)、提高碳氢化合物采收率(5 - 7)以及用于能量存储的可流动电极(8)的合理设计至关重要。含有荧光胶体和非吸附性聚合物的悬浮液是有吸引力的模型体系,因为聚合物的回转半径与颗粒半径之比以及聚合物浓度分别控制着颗粒间吸引力的范围和强度。通过调节聚合物性质和胶体的体积分数,可以获得胶体流体、团簇流体、凝胶、晶体和玻璃(9)。共聚焦显微镜是荧光显微镜的一种变体,它能够以高空间和时间分辨率对光学透明且有荧光的样品进行三维成像。在这项技术中,一个小针孔或狭缝会阻挡来自样品中位于显微镜光学系统焦体积之外区域的发射荧光。结果,仅对焦平面内样品的一个薄截面进行成像。这项技术特别适合在单颗粒尺度上探测致密胶体悬浮液中的结构和动力学:颗粒足够大,可以用可见光分辨,并且扩散足够慢,能够以商业共聚焦系统的典型扫描速度捕获(10)。扫描速度和分析算法的改进也使得对流动悬浮液进行定量共聚焦成像成为可能(11 - 16,37)。在本文中,我们展示了共聚焦显微镜实验,以探测胶体 - 聚合物混合物的受限相行为和流动性质。我们首先制备密度和折射率匹配的胶体 - 聚合物混合物。接下来,我们报告一种标准方案,用于在薄楔形细胞中不同限制条件下对静态致密胶体 - 聚合物混合物进行成像。最后,我们展示一种在微通道流动过程中对胶体 - 聚合物混合物进行成像的方案。