Suppr超能文献

NRAS G12D癌蛋白通过激活MEK/ERK轴抑制表达Cbfβ-SMMHC的白血病前期细胞的凋亡。

NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfβ-SMMHC via activation of MEK/ERK axis.

作者信息

Xue Liting, Pulikkan John A, Valk Peter J M, Castilla Lucio H

机构信息

Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester MA; and.

Erasmus University Medical Center, Rotterdam, The Netherlands.

出版信息

Blood. 2014 Jul 17;124(3):426-36. doi: 10.1182/blood-2013-12-541730. Epub 2014 Jun 3.

Abstract

Acute myeloid leukemia (AML) results from the activity of driver mutations that deregulate proliferation and survival of hematopoietic stem cells (HSCs). The fusion protein CBFβ-SMMHC impairs differentiation in hematopoietic stem and progenitor cells and induces AML in cooperation with other mutations. However, the combined function of CBFβ-SMMHC and cooperating mutations in preleukemic expansion is not known. Here, we used Nras(LSL-G12D); Cbfb(56M) knock-in mice to show that allelic expression of oncogenic Nras(G12D) and Cbfβ-SMMHC increases survival of preleukemic short-term HSCs and myeloid progenitor cells and maintains the differentiation block induced by the fusion protein. Nras(G12D) and Cbfβ-SMMHC synergize to induce leukemia in mice in a cell-autonomous manner, with a shorter median latency and higher leukemia-initiating cell activity than that of mice expressing Cbfβ-SMMHC. Furthermore, Nras(LSL-G12D); Cbfb(56M) leukemic cells were sensitive to pharmacologic inhibition of the MEK/ERK signaling pathway, increasing apoptosis and Bim protein levels. These studies demonstrate that Cbfβ-SMMHC and Nras(G12D) promote the survival of preleukemic myeloid progenitors primed for leukemia by activation of the MEK/ERK/Bim axis, and define Nras(LSL-G12D); Cbfb(56M) mice as a valuable genetic model for the study of inversion(16) AML-targeted therapies.

摘要

急性髓系白血病(AML)源于驱动突变的活性,这些突变会使造血干细胞(HSC)的增殖和存活失调。融合蛋白CBFβ - SMMHC会损害造血干细胞和祖细胞的分化,并与其他突变协同诱导AML。然而,CBFβ - SMMHC与协同突变在白血病前期扩增中的联合功能尚不清楚。在此,我们使用Nras(LSL - G12D);Cbfb(56M)基因敲入小鼠来表明致癌性Nras(G12D)和CBFβ - SMMHC的等位基因表达可提高白血病前期短期HSC和髓系祖细胞的存活率,并维持融合蛋白诱导的分化阻滞。Nras(G12D)和CBFβ - SMMHC协同以细胞自主方式在小鼠中诱导白血病,与表达CBFβ - SMMHC的小鼠相比,其平均潜伏期更短,白血病起始细胞活性更高。此外,Nras(LSL - G12D);Cbfb(56M)白血病细胞对MEK/ERK信号通路的药理抑制敏感,增加了细胞凋亡和Bim蛋白水平。这些研究表明,CBFβ - SMMHC和Nras(G12D)通过激活MEK/ERK/Bim轴促进了准备发生白血病的白血病前期髓系祖细胞的存活,并将Nras(LSL - G12D);Cbfb(56M)小鼠定义为研究inv(16) AML靶向治疗的有价值的遗传模型。

相似文献

1
NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfβ-SMMHC via activation of MEK/ERK axis.
Blood. 2014 Jul 17;124(3):426-36. doi: 10.1182/blood-2013-12-541730. Epub 2014 Jun 3.
3
HDAC1 Is a Required Cofactor of CBFβ-SMMHC and a Potential Therapeutic Target in Inversion 16 Acute Myeloid Leukemia.
Mol Cancer Res. 2019 Jun;17(6):1241-1252. doi: 10.1158/1541-7786.MCR-18-0922. Epub 2019 Feb 27.
5
CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia.
Cell. 2018 Jun 28;174(1):172-186.e21. doi: 10.1016/j.cell.2018.05.048.
6
CBFβ-SMMHC creates aberrant megakaryocyte-erythroid progenitors prone to leukemia initiation in mice.
Blood. 2016 Sep 15;128(11):1503-15. doi: 10.1182/blood-2016-01-693119. Epub 2016 Jul 21.
7
Cbfbeta reduces Cbfbeta-SMMHC-associated acute myeloid leukemia in mice.
Cancer Res. 2006 Dec 1;66(23):11214-8. doi: 10.1158/0008-5472.CAN-06-0959.
8
FLT3-ITD cooperates with inv(16) to promote progression to acute myeloid leukemia.
Blood. 2008 Feb 1;111(3):1567-74. doi: 10.1182/blood-2006-06-030312. Epub 2007 Oct 29.
9
Preleukemia and Leukemia-Initiating Cell Activity in inv(16) Acute Myeloid Leukemia.
Front Oncol. 2018 Apr 26;8:129. doi: 10.3389/fonc.2018.00129. eCollection 2018.

引用本文的文献

1
Humanized mouse models in MDS.
Cell Death Dis. 2025 Jul 17;16(1):531. doi: 10.1038/s41419-025-07861-0.
2
Molecular genetics profiling of core-binding factor acute myeloid leukemia in pediatrics.
Ther Adv Hematol. 2025 Apr 16;16:20406207251330064. doi: 10.1177/20406207251330064. eCollection 2025.
3
The co-receptor Neuropilin-1 enhances proliferation in inv(16) acute myeloid leukemia via VEGF signaling.
Leukemia. 2025 Feb;39(2):360-370. doi: 10.1038/s41375-024-02471-9. Epub 2024 Nov 21.
4
Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia.
Biol Open. 2024 Sep 15;13(9). doi: 10.1242/bio.060523. Epub 2024 Aug 30.
5
The RTK-RAS signaling pathway is enriched in patients with rare acute myeloid leukemia harboring t(16;21)(p11;q22)/.
Blood Sci. 2024 May 10;6(2):e00188. doi: 10.1097/BS9.0000000000000188. eCollection 2024 Apr.
6
N-MYC regulates cell survival via eIF4G1 in inv(16) acute myeloid leukemia.
Sci Adv. 2024 Mar;10(9):eadh8493. doi: 10.1126/sciadv.adh8493. Epub 2024 Feb 28.
7
Emerging therapies for inv(16) AML.
Blood. 2021 May 13;137(19):2579-2584. doi: 10.1182/blood.2020009933.
8
Down-Regulated FOXO1 in Refractory/Relapse Childhood B-Cell Acute Lymphoblastic Leukemia.
Front Oncol. 2020 Nov 11;10:579673. doi: 10.3389/fonc.2020.579673. eCollection 2020.
9
TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1.
J Exp Clin Cancer Res. 2020 Aug 14;39(1):158. doi: 10.1186/s13046-020-01658-z.
10
Mouse Models of Myeloid Malignancies.
Cold Spring Harb Perspect Med. 2021 Jan 4;11(1):a035535. doi: 10.1101/cshperspect.a035535.

本文引用的文献

1
Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2548-53. doi: 10.1073/pnas.1324297111. Epub 2014 Feb 3.
2
Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.
Nature. 2014 Feb 20;506(7488):328-33. doi: 10.1038/nature13038. Epub 2014 Feb 12.
3
Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation.
Cancer Discov. 2013 Sep;3(9):993-1001. doi: 10.1158/2159-8290.CD-13-0096. Epub 2013 Jun 3.
4
Nras(G12D/+) promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions.
Blood. 2013 Jun 27;121(26):5203-7. doi: 10.1182/blood-2012-12-475863. Epub 2013 May 17.
5
Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects.
Ann Hematol. 2013 May;92(5):587-94. doi: 10.1007/s00277-012-1653-5. Epub 2013 Jan 10.
6
Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice.
J Clin Invest. 2013 Jan;123(1):335-9. doi: 10.1172/JCI63193. Epub 2012 Dec 10.
8
Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia.
Sci Transl Med. 2012 Aug 29;4(149):149ra118. doi: 10.1126/scitranslmed.3004315.
9
The origin and evolution of mutations in acute myeloid leukemia.
Cell. 2012 Jul 20;150(2):264-78. doi: 10.1016/j.cell.2012.06.023.
10
Clonal architecture of secondary acute myeloid leukemia.
N Engl J Med. 2012 Mar 22;366(12):1090-8. doi: 10.1056/NEJMoa1106968. Epub 2012 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验