Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France.
Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille, France.
Biophys J. 2014 Jun 3;106(11):2330-9. doi: 10.1016/j.bpj.2014.04.011.
The orientational distribution of fluorophores is an important reporter of the structure and function of their molecular environment. Although this distribution affects the fluorescence signal under polarized-light excitation, its retrieval is limited to a small number of parameters. Because of this limitation, the need for a geometrical model (cone, Gaussian, etc.) to effect such retrieval is often invoked. In this work, using a symmetry decomposition of the distribution function of the fluorescent molecules, we show that polarized two-photon fluorescence based on tunable linear dichroism allows for the retrieval of this distribution with reasonable fidelity and without invoking either an a priori knowledge of the system to be investigated or a geometrical model. We establish the optimal level of detail to which any distribution can be retrieved using this technique. As applied to artificial lipid vesicles and cell membranes, the ability of this method to identify and quantify specific structural properties that complement the more traditional molecular-order information is demonstrated. In particular, we analyze situations that give access to the sharpness of the angular constraint, and to the evidence of an isotropic population of fluorophores within the focal volume encompassing the membrane. Moreover, this technique has the potential to address complex situations such as the distribution of a tethered membrane protein label in an ordered environment.
荧光团的取向分布是其分子环境结构和功能的重要示踪剂。尽管这种分布会影响偏振光激发下的荧光信号,但对其的恢复仅限于少数几个参数。由于这种局限性,通常需要一个几何模型(锥形、高斯等)来实现这种恢复。在这项工作中,我们利用荧光分子分布函数的对称分解,表明基于可调谐线性二色性的偏振双光子荧光允许以合理的保真度恢复这种分布,而无需调用要研究的系统的先验知识或几何模型。我们确定了使用该技术可以恢复任何分布的最佳细节程度。将其应用于人工脂质囊泡和细胞膜,该方法能够识别和量化特定的结构特性,这些特性补充了更传统的分子有序信息。特别地,我们分析了可以获得角度约束锐度的情况,以及在包含膜的焦体积内存在各向同性荧光团的证据。此外,该技术有可能解决复杂情况,例如在有序环境中固定膜蛋白标记物的分布。