Suppr超能文献

脂多糖诱导的动态脂质膜重组:小管、穿孔和堆叠。

Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks.

机构信息

Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico.

Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico.

出版信息

Biophys J. 2014 Jun 3;106(11):2395-407. doi: 10.1016/j.bpj.2014.04.016.

Abstract

Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na(+) leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca(2+) gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.

摘要

脂多糖(LPS)是一种独特的糖脂,具有两个主要的生理作用:1),作为革兰氏阴性菌外膜的主要结构成分;2),当从细胞释放到溶液中时(内毒素),作为一种非常有效的哺乳动物毒素。LPS 是一种两亲性物质,它自发地插入脂质双层的外叶,将其疏水性脂质域埋藏起来,使亲水性多糖链暴露在外部极性溶剂中。长期以来,二价阳离子一直被认为可以中和并稳定外膜中的 LPS,而单价阳离子存在时,LPS 会形成高度移动的带负电荷的聚集体。然而,我们对 LPS 及其与细胞膜相互作用的理解很大程度上没有考虑到其两亲性生物化学和电荷极化。在此,我们报告了 LPS 与流体相支撑脂质双层组装体(sLBA)作为模型膜相互作用的荧光显微镜和原子力显微镜分析。根据阳离子的可用性,LPS 对简单的 sLBA 会产生三种截然不同的影响。带负电荷的 LPS-Na(+)会导致表面相关脂质囊泡形成的 100μm 长的柔性脂质管,并使 sLBA 失稳,导致形成微米大小的孔。中性的 LPS-Ca(2+)会导致表面相关脂质囊泡形成 100μm 宽的单层或多层平面脂质片和 LPS。我们的发现对于 LPS 和脂质之间的物理相互作用具有重要意义,并表明 sLBA 可以成为研究两亲性毒力因子与细胞膜相互作用的有用平台。此外,我们的研究支持了一个普遍现象,即带有高电荷或大基团的脂质可以由于静电和/或位阻排斥作用而促进高度弯曲的膜结构。

相似文献

1
Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks.
Biophys J. 2014 Jun 3;106(11):2395-407. doi: 10.1016/j.bpj.2014.04.016.
3
Membrane Insertion for the Detection of Lipopolysaccharides: Exploring the Dynamics of Amphiphile-in-Lipid Assays.
PLoS One. 2016 May 26;11(5):e0156295. doi: 10.1371/journal.pone.0156295. eCollection 2016.
7
Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic.
J R Soc Interface. 2013 Oct 16;10(89):20130810. doi: 10.1098/rsif.2013.0810. Print 2013 Dec 6.
8
Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models.
Langmuir. 2015;31(1):404-12. doi: 10.1021/la504407v. Epub 2014 Dec 19.
9
Through the Lipopolysaccharide Glass: A Potent Antimicrobial Peptide Induces Phase Changes in Membranes.
Biochemistry. 2017 Mar 21;56(11):1672-1679. doi: 10.1021/acs.biochem.6b01063. Epub 2017 Mar 7.

引用本文的文献

1
Interactions between Lipopolysaccharide and Peptide Bacteriocin BacSp222 Influence Their Biological Activities.
ACS Infect Dis. 2025 Aug 8;11(8):2116-2130. doi: 10.1021/acsinfecdis.5c00066. Epub 2025 Jul 8.
2
Membrane tubulation induced by a bacterial glycolipid.
Sci Rep. 2025 Mar 20;15(1):9699. doi: 10.1038/s41598-025-93563-8.
3
Penton blooming, a conserved mechanism of genome delivery used by disparate microviruses.
mBio. 2025 Apr 9;16(4):e0371324. doi: 10.1128/mbio.03713-24. Epub 2025 Mar 19.
4
Factors Promoting Lipopolysaccharide Uptake by Synthetic Lipid Droplets.
ACS Omega. 2025 Feb 10;10(6):5866-5873. doi: 10.1021/acsomega.4c09599. eCollection 2025 Feb 18.
5
Lipopolysaccharide supramolecular organization regulates the activation of coagulation factor XII.
Biochim Biophys Acta Biomembr. 2025 Mar;1867(3):184415. doi: 10.1016/j.bbamem.2025.184415. Epub 2025 Feb 6.
6
Factors Promoting Lipopolysaccharide Uptake by Synthetic Lipid Droplets.
bioRxiv. 2024 Oct 19:2024.10.19.619182. doi: 10.1101/2024.10.19.619182.
7
Integrative structural analysis of Pseudomonas phage DEV reveals a genome ejection motor.
Nat Commun. 2024 Oct 1;15(1):8482. doi: 10.1038/s41467-024-52752-1.
8
Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review.
Microorganisms. 2024 Jun 21;12(7):1259. doi: 10.3390/microorganisms12071259.
9
A stargate mechanism of genome delivery unveiled by cryogenic electron tomography.
bioRxiv. 2024 Jun 11:2024.06.11.598214. doi: 10.1101/2024.06.11.598214.
10
Combined effect of SAR-endolysin LysKpV475 with polymyxin B and bacteriophage phSE-5.
Microbiology (Reading). 2024 May;170(5). doi: 10.1099/mic.0.001462.

本文引用的文献

1
Solid supported lipid bilayers: From biophysical studies to sensor design.
Surf Sci Rep. 2006 Nov 15;61(10):429-444. doi: 10.1016/j.surfrep.2006.06.001. Epub 2006 Sep 25.
2
The effect of endotoxin on thin lipid bilayer membranes.
J Membr Biol. 1970 Dec;3(1):67-72. doi: 10.1007/BF01868007.
3
Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
Langmuir. 2012 Dec 18;28(50):17396-403. doi: 10.1021/la303300b. Epub 2012 Dec 4.
4
Membrane bending by protein-protein crowding.
Nat Cell Biol. 2012 Sep;14(9):944-9. doi: 10.1038/ncb2561. Epub 2012 Aug 19.
5
Block Liposome and Nanotube Formation is a General Phenomenon of Two-Component Membranes Containing Multivalent Lipids.
Soft Matter. 2011 Jan 1;7(18):8363-8369. doi: 10.1039/C1SM05481C. Epub 2011 Jun 20.
6
Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides.
Biochim Biophys Acta. 2012 Sep;1817(9):1616-27. doi: 10.1016/j.bbabio.2012.05.013. Epub 2012 May 31.
7
Understanding the interaction of Lipoarabinomannan with membrane mimetic architectures.
Tuberculosis (Edinb). 2012 Jan;92(1):38-47. doi: 10.1016/j.tube.2011.09.006. Epub 2011 Oct 26.
8
Lipid bilayer templated gold nanoparticles nanoring formation using zirconium ion coordination chemistry.
Langmuir. 2011 Aug 2;27(15):9484-9. doi: 10.1021/la2014754. Epub 2011 Jun 23.
9
Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides.
Biochim Biophys Acta. 2011 Sep;1807(9):1044-55. doi: 10.1016/j.bbabio.2011.05.019. Epub 2011 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验