Suppr超能文献

通过基于量子力学的螯合计算进行抑制剂排名,用于HIV-1核糖核酸酶H抑制的虚拟筛选。

Inhibitor ranking through QM based chelation calculations for virtual screening of HIV-1 RNase H inhibition.

作者信息

Poongavanam Vasanthanathan, Steinmann Casper, Kongsted Jacob

机构信息

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.

出版信息

PLoS One. 2014 Jun 4;9(6):e98659. doi: 10.1371/journal.pone.0098659. eCollection 2014.

Abstract

Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function. Furthermore, full protein fragment molecular orbital (FMO) calculations were conducted and subsequently analysed for individual residue stabilization/destabilization energy contributions to the overall binding affinity in order to better understand the true and false predictions. After a successful assessment of the methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation calculations to significantly reduce the large number of false positives. Thus, the computational models tested in this study could be useful as high throughput filters for searching HIV-1 RNase H active-site molecules in the virtual screening process.

摘要

量子力学(QM)计算已被用于预测一组配体对HIV-1逆转录酶相关核糖核酸酶H(RNH)的结合亲和力。与使用经验评分函数相比,基于QM的螯合计算显示出对抑制剂结合亲和力预测的改进。此外,进行了完整蛋白质片段分子轨道(FMO)计算,并随后分析了各个残基对整体结合亲和力的稳定/去稳定能量贡献,以便更好地理解真阳性和假阳性预测。在基于一组训练分子成功评估这些方法之后,基于QM的螯合计算被用作ZINC数据库中化合物虚拟筛选的过滤器。由此,我们发现,与常规对接相比,基于QM的螯合计算可显著减少大量假阳性。因此,本研究中测试的计算模型可作为高通量过滤器,用于在虚拟筛选过程中搜索HIV-1核糖核酸酶H活性位点分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6810/4045755/55d316414700/pone.0098659.g001.jpg

相似文献

1
Inhibitor ranking through QM based chelation calculations for virtual screening of HIV-1 RNase H inhibition.
PLoS One. 2014 Jun 4;9(6):e98659. doi: 10.1371/journal.pone.0098659. eCollection 2014.
2
A 2-Hydroxyisoquinoline-1,3-Dione Active-Site RNase H Inhibitor Binds in Multiple Modes to HIV-1 Reverse Transcriptase.
Antimicrob Agents Chemother. 2017 Sep 22;61(10). doi: 10.1128/AAC.01351-17. Print 2017 Oct.
3
Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones.
Nucleic Acids Res. 2005 Mar 1;33(4):1249-56. doi: 10.1093/nar/gki268. Print 2005.
5
Structural basis of the allosteric inhibitor interaction on the HIV-1 reverse transcriptase RNase H domain.
Chem Biol Drug Des. 2012 Nov;80(5):706-16. doi: 10.1111/cbdd.12010. Epub 2012 Aug 31.
6
Determinants of Active-Site Inhibitor Interaction with HIV-1 RNase H.
ACS Infect Dis. 2019 Nov 8;5(11):1963-1974. doi: 10.1021/acsinfecdis.9b00300. Epub 2019 Oct 2.
7
Data mining and molecular dynamics analysis to detect HIV-1 reverse transcriptase RNase H activity inhibitor.
Mol Divers. 2024 Aug;28(4):1869-1888. doi: 10.1007/s11030-023-10707-6. Epub 2023 Aug 10.
10
Developing and Evaluating Inhibitors against the RNase H Active Site of HIV-1 Reverse Transcriptase.
J Virol. 2018 Jun 13;92(13). doi: 10.1128/JVI.02203-17. Print 2018 Jul 1.

引用本文的文献

1
Design, synthesis, and biologic evaluation of novel galloyl derivatives as HIV-1 RNase H inhibitors.
Chem Biol Drug Des. 2019 Apr;93(4):582-589. doi: 10.1111/cbdd.13455. Epub 2019 Jan 24.
3
Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase.
ACS Omega. 2016 Sep 30;1(3):435-447. doi: 10.1021/acsomega.6b00123. Epub 2016 Sep 21.

本文引用的文献

1
Virtual screening models for prediction of HIV-1 RT associated RNase H inhibition.
PLoS One. 2013 Sep 16;8(9):e73478. doi: 10.1371/journal.pone.0073478. eCollection 2013.
2
Scaffold-focused virtual screening: prospective application to the discovery of TTK inhibitors.
J Chem Inf Model. 2013 May 24;53(5):1100-12. doi: 10.1021/ci400100c. Epub 2013 May 14.
3
Inhibitors of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity.
Biology (Basel). 2012 Oct 19;1(3):521-41. doi: 10.3390/biology1030521.
4
Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments.
J Comput Aided Mol Des. 2013 Mar;27(3):221-34. doi: 10.1007/s10822-013-9644-8. Epub 2013 Apr 12.
5
FragIt: a tool to prepare input files for fragment based quantum chemical calculations.
PLoS One. 2012;7(9):e44480. doi: 10.1371/journal.pone.0044480. Epub 2012 Sep 18.
6
ZINCPharmer: pharmacophore search of the ZINC database.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W409-14. doi: 10.1093/nar/gks378. Epub 2012 May 2.
8
Free energy calculations of protein-ligand interactions.
Curr Opin Chem Biol. 2011 Aug;15(4):547-52. doi: 10.1016/j.cbpa.2011.05.021. Epub 2011 Jun 22.
9
Structural and binding analysis of pyrimidinol carboxylic acid and N-hydroxy quinazolinedione HIV-1 RNase H inhibitors.
Antimicrob Agents Chemother. 2011 Jun;55(6):2905-15. doi: 10.1128/AAC.01594-10. Epub 2011 Apr 4.
10
HIV-1 RT-associated RNase H function inhibitors: Recent advances in drug development.
Curr Med Chem. 2010;17(26):2837-53. doi: 10.2174/092986710792065045.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验