Suppr超能文献

ZINCPharmer:ZINC 数据库中的药效团搜索。

ZINCPharmer: pharmacophore search of the ZINC database.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.

出版信息

Nucleic Acids Res. 2012 Jul;40(Web Server issue):W409-14. doi: 10.1093/nar/gks378. Epub 2012 May 2.

Abstract

ZINCPharmer (http://zincpharmer.csb.pitt.edu) is an online interface for searching the purchasable compounds of the ZINC database using the Pharmer pharmacophore search technology. A pharmacophore describes the spatial arrangement of the essential features of an interaction. Compounds that match a well-defined pharmacophore serve as potential lead compounds for drug discovery. ZINCPharmer provides tools for constructing and refining pharmacophore hypotheses directly from molecular structure. A search of 176 million conformers of 18.3 million compounds typically takes less than a minute. The results can be immediately viewed, or the aligned structures may be downloaded for off-line analysis. ZINCPharmer enables the rapid and interactive search of purchasable chemical space.

摘要

ZINCPharmer(http://zincpharmer.csb.pitt.edu)是一个在线界面,使用 Pharmer 药效团搜索技术搜索可购买的 ZINC 数据库化合物。药效团描述了相互作用的基本特征的空间排列。与明确定义的药效团匹配的化合物可以作为药物发现的潜在先导化合物。ZINCPharmer 提供了从分子结构直接构建和精炼药效团假设的工具。对 1830 万种化合物的 1.76 亿种构象的搜索通常不到一分钟。结果可以立即查看,也可以下载对齐的结构进行离线分析。ZINCPharmer 实现了可购买化学空间的快速互动搜索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe06/3394271/41c97a5ab29e/gks378f1.jpg

相似文献

1
ZINCPharmer: pharmacophore search of the ZINC database.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W409-14. doi: 10.1093/nar/gks378. Epub 2012 May 2.
2
Pharmit: interactive exploration of chemical space.
Nucleic Acids Res. 2016 Jul 8;44(W1):W442-8. doi: 10.1093/nar/gkw287. Epub 2016 Apr 19.
3
PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W609-14. doi: 10.1093/nar/gkq300. Epub 2010 Apr 29.
4
Pharmer: efficient and exact pharmacophore search.
J Chem Inf Model. 2011 Jun 27;51(6):1307-14. doi: 10.1021/ci200097m. Epub 2011 Jun 2.
5
Ligand-based pharmacophore detection, screening of potential gliptins and docking studies to get effective antidiabetic agents.
Comb Chem High Throughput Screen. 2012 Dec;15(10):849-76. doi: 10.2174/138620712803901090.
6
A Teach-Discover-Treat Application of ZincPharmer: An Online Interactive Pharmacophore Modeling and Virtual Screening Tool.
PLoS One. 2015 Aug 10;10(8):e0134697. doi: 10.1371/journal.pone.0134697. eCollection 2015.
7
Mapping drug-target interaction networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2336-9. doi: 10.1109/IEMBS.2009.5335053.
9
Using ZINC to acquire a virtual screening library.
Curr Protoc Bioinformatics. 2008 Jun;Chapter 14:14.6.1-14.6.23. doi: 10.1002/0471250953.bi1406s22.
10
PharmaGist: a webserver for ligand-based pharmacophore detection.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W223-8. doi: 10.1093/nar/gkn187. Epub 2008 Apr 19.

引用本文的文献

1
In-Silico discovery of novel cephalosporin antibiotic conformers via ligand-based pharmacophore modelling and de novo molecular design.
J Genet Eng Biotechnol. 2025 Sep;23(3):100514. doi: 10.1016/j.jgeb.2025.100514. Epub 2025 Jun 3.
2
Targeting the cyclin D/CDK4 Axis to unlock new therapeutic approaches to enhance cancer treatment.
PLoS One. 2025 Aug 22;20(8):e0330102. doi: 10.1371/journal.pone.0330102. eCollection 2025.
3
A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.
Commun Chem. 2025 Jul 1;8(1):194. doi: 10.1038/s42004-025-01581-4.
5
Identification of druggable binding sites and small molecules as modulators of TMC1.
Commun Biol. 2025 May 13;8(1):742. doi: 10.1038/s42003-025-07943-x.
6
Staphylococcus aureus AgrA Modulators From South African Antimicrobial Plants.
Chem Biodivers. 2025 Sep;22(9):e202403220. doi: 10.1002/cbdv.202403220. Epub 2025 Apr 28.
7
Developing Novel Beta-Secretase Inhibitors in a Computer Model as a Possible Treatment for Alzheimer's Disease.
Adv Pharmacol Pharm Sci. 2025 Mar 31;2025:5528793. doi: 10.1155/adpp/5528793. eCollection 2025.
8
New strategies to enhance the efficiency and precision of drug discovery.
Front Pharmacol. 2025 Feb 11;16:1550158. doi: 10.3389/fphar.2025.1550158. eCollection 2025.

本文引用的文献

1
Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure.
Bioinformatics. 2012 Mar 15;28(6):784-91. doi: 10.1093/bioinformatics/btr717. Epub 2011 Dec 30.
2
Open Babel: An open chemical toolbox.
J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33.
3
Swimming into peptidomimetic chemical space using pepMMsMIMIC.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W261-9. doi: 10.1093/nar/gkr287. Epub 2011 May 27.
4
Pharmer: efficient and exact pharmacophore search.
J Chem Inf Model. 2011 Jun 27;51(6):1307-14. doi: 10.1021/ci200097m. Epub 2011 Jun 2.
5
EDULISS: a small-molecule database with data-mining and pharmacophore searching capabilities.
Nucleic Acids Res. 2011 Jan;39(Database issue):D1042-8. doi: 10.1093/nar/gkq878. Epub 2010 Nov 4.
7
PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W609-14. doi: 10.1093/nar/gkq300. Epub 2010 Apr 29.
8
Three-dimensional pharmacophore methods in drug discovery.
J Med Chem. 2010 Jan 28;53(2):539-58. doi: 10.1021/jm900817u.
9
PharmaGist: a webserver for ligand-based pharmacophore detection.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W223-8. doi: 10.1093/nar/gkn187. Epub 2008 Apr 19.
10
Molecule-pharmacophore superpositioning and pattern matching in computational drug design.
Drug Discov Today. 2008 Jan;13(1-2):23-9. doi: 10.1016/j.drudis.2007.09.007. Epub 2007 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验