Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
Mol Ecol. 2014 Jul;23(14):3469-82. doi: 10.1111/mec.12822. Epub 2014 Jun 25.
Research on the thermal biology of Antarctic marine organisms has increased awareness of their vulnerability to climate change, as a flipside of their adaptation to life in the permanent cold and their limited capacity to acclimate to variable temperatures. Here, we employed a species-specific microarray of the Antarctic eelpout, Pachycara brachycephalum, to identify long-term shifts in gene expression after 2 months of acclimation to six temperatures between -1 and 9 °C. Changes in cellular processes comprised signalling, post-translational modification, cytoskeleton remodelling, metabolic shifts and alterations in the transcription as well as translation machinery. The magnitude of transcriptomic responses paralleled the change in whole animal performance. Optimal growth at 3 °C occurred at a minimum in gene expression changes indicative of a balanced steady state. The up-regulation of ribosomal transcripts at 5 °C and above was accompanied by the transcriptomic activation of differential protein degradation pathways, from proteasome-based degradation in the cold towards lysosomal protein degradation in the warmth. From 7 °C upwards, increasing transcript levels representing heat-shock proteins and an acute inflammatory response indicate cellular stress. Such patterns may contribute to a warm-induced energy deficit and a strong weight loss at temperatures above 6 °C. Together, cold or warm acclimation led to specific cellular rearrangements and the progressive development of functional imbalances beyond the optimum temperature. The observed temperature-specific expression profiles reveal the molecular basis of thermal plasticity and refine present understanding of the shape and positioning of the thermal performance curve of ectotherms on the temperature scale.
对南极海洋生物热生物学的研究提高了人们对其易受气候变化影响的认识,这是它们适应永久寒冷生活和对温度变化适应能力有限的一个副作用。在这里,我们使用了特定于南极鳕鱼(Pachycara brachycephalum)的物种特异性微阵列,在 2 个月的时间里,将其适应 -1 至 9°C 之间的 6 个温度的过程中,确定了基因表达的长期变化。细胞过程的变化包括信号转导、翻译后修饰、细胞骨架重塑、代谢变化以及转录和翻译机制的改变。转录组响应的幅度与整体动物性能的变化相平行。在 3°C 时,最佳生长状态下的基因表达变化最小,表明处于平衡的稳定状态。在 5°C 及以上时,核糖体转录物的上调伴随着差异蛋白降解途径的转录组激活,从冷时的蛋白酶体降解到热时的溶酶体蛋白降解。从 7°C 开始,代表热休克蛋白和急性炎症反应的转录本水平升高表明细胞应激。这种模式可能导致温暖诱导的能量不足和 6°C 以上温度下体重明显下降。总的来说,冷或热适应导致了特定的细胞重排,并在最佳温度之外导致了功能失衡的逐渐发展。观察到的温度特异性表达谱揭示了热可塑性的分子基础,并完善了对变温动物在温度范围内热性能曲线形状和位置的现有理解。