Suppr超能文献

Prediction of polycystic ovarian syndrome based on ultrasound findings and clinical parameters.

作者信息

Moschos Elysia, Twickler Diane M

机构信息

University of Texas Southwestern Medical Center, Division of Gynecology, Department of Obstetrics and Gynecology, Dallas, TX.

出版信息

J Clin Ultrasound. 2015 Mar;43(3):157-63. doi: 10.1002/jcu.22182. Epub 2014 Jun 4.

Abstract

OBJECTIVE

To determine the accuracy of sonographic-diagnosed polycystic ovaries and clinical parameters in predicting polycystic ovarian syndrome.

METHODS

Medical records and ultrasounds of 151 women with sonographically diagnosed polycystic ovaries were reviewed. Sonographic criteria for polycystic ovaries were based on 2003 Rotterdam European Society of Human Reproduction and Embryology/American Society for Reproductive Medicine guidelines: at least one ovary with 12 or more follicles measuring 2-9 mm and/or increased ovarian volume >10 cm(3) . Clinical variables of age, gravidity, ethnicity, body mass index, and sonographic indication were collected. One hundred thirty-five patients had final outcomes (presence/absence of polycystic ovarian syndrome). Polycystic ovarian syndrome was diagnosed if a patient had at least one other of the following two criteria: oligo/chronic anovulation and/or clinical/biochemical hyperandrogenism. A logistic regression model was constructed using stepwise selection to identify variables significantly associated with polycystic ovarian syndrome (p < .05). The validity of the model was assessed using receiver operating characteristics and Hosmer-Lemeshow χ(2) analyses.

RESULTS

One hundred twenty-eight patients met official sonographic criteria for polycystic ovaries and 115 (89.8%) had polycystic ovarian syndrome (p = .009). Lower gravidity, abnormal bleeding, and body mass index >33 were significant in predicting polycystic ovarian syndrome (receiver operating characteristics curve, c = 0.86). Pain decreased the likelihood of polycystic ovarian syndrome.

CONCLUSIONS

Polycystic ovaries on ultrasound were sensitive in predicting polycystic ovarian syndrome. Ultrasound, combined with clinical parameters, can be used to generate a predictive index for polycystic ovarian syndrome.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验