Hofmann Volker, Geurten Bart R H, Sanguinetti-Scheck Juan I, Gómez-Sena Leonel, Engelmann Jacob
Active Sensing, Faculty of Biology, Cognitive Interaction Technology - Center of Excellence, Bielefeld University Bielefeld, Germany.
Cellular Neurobiology, Schwann-Schleiden Research Centre, Georg-August-Universität Göttingen, Germany.
Front Behav Neurosci. 2014 May 28;8:186. doi: 10.3389/fnbeh.2014.00186. eCollection 2014.
Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing.
在主动电感觉信息获取过程中所展示的运动模式似乎是一种感觉策略的重要组成部分,通过这种策略弱电鱼能够主动生成并塑造感觉信息流。这些主动感知策略有望在运动效率或所获取的感觉信息方面适应性地优化正在进行的行为。在主动电定位中,运动领域与感觉感知之间的紧密联系使得像彼得氏裸臀鱼这样的弱电鱼成为研究以主动感知策略形式存在的感觉 - 运动相互作用的理想系统。通过分析单独的鱼在黑暗中对物体进行无约束探索时的运动和电信号,我们在此首次正式量化了鱼在电定位过程中使用的运动模式。基于对运动学值的聚类分析,我们对运动的基本单元进行了分类。然后对这些单元进行关联分组分析,以识别并提取短的连贯行为链。这使得能够在不同复杂程度水平上描述感觉行为:从单个运动、短行为到更复杂的行为序列,在此期间运动学在不同行为之间发生变化。我们展示了三种分类模式的详细数据,并提供证据表明这些模式可被视为主动感知策略的运动组成部分。与主动感知策略的观点一致,我们发现分类运动模式会受到感觉环境的影响。此外,这些运动模式与以不同电器官放电频率和不同空间分布形式存在的时间采样变化相关联。定量检测此类策略的能力将使未来的研究能够探究此类行为对感知的影响。