Pieters L A, Vlietinck A J
Department of Pharmaceutical Sciences, University of Antwerp (UIA), Belgium.
J Pharm Biomed Anal. 1989;7(12):1405-71. doi: 10.1016/0731-7085(89)80145-1.
The usefulness of 1H and 13C Fourier transform (FT) nuclear magnetic resonance spectroscopy (1H- and 13C-NMR) as quantitative methods stems from the potential direct relationship between the area under an NMR peak and the number of the particular type of nuclei that give rise to the signal, though it is necessary, especially for quantitative 13C-NMR, to take some precautions. The experimental limitations that have to be overcome in order to obtain quantitative 13C-NMR spectra are associated with the relaxation time, the nuclear Overhauser effect (NOE), and the NMR instrument itself (filter characteristics, power level of the exciting pulse, dynamic range, digital resolution). Practical problems aside, 13C-NMR has a greater potential than 1H-NMR for the study of organic systems. The sensitivity of 13C chemical shifts to small differences in molecular environment, coupled with a large chemical shift range, gives a "chromatographic" separation of resonances of interest, and has made 13C-NMR an attractive method for analysing complex mixtures. Some applications of quantitative 1H- and 13C-NMR spectroscopy in drug analysis are discussed.
1H和13C傅里叶变换(FT)核磁共振波谱法(1H-NMR和13C-NMR)作为定量方法的实用性源于NMR峰下面积与产生该信号的特定类型原子核数量之间的潜在直接关系,不过,尤其是对于定量13C-NMR,有必要采取一些预防措施。为了获得定量13C-NMR谱图而必须克服的实验限制与弛豫时间、核Overhauser效应(NOE)以及NMR仪器本身(滤波器特性、激发脉冲的功率水平、动态范围、数字分辨率)有关。撇开实际问题不谈,13C-NMR在有机体系研究方面比1H-NMR具有更大的潜力。13C化学位移对分子环境微小差异的敏感性,再加上较大的化学位移范围,使得感兴趣的共振峰得以“色谱”分离,这使得13C-NMR成为分析复杂混合物的一种有吸引力的方法。本文讨论了定量1H-NMR和13C-NMR波谱法在药物分析中的一些应用。