Suppr超能文献

人类代谢组学的遗传学,接下来会怎样?

Genetics of the human metabolome, what is next?

作者信息

Dharuri Harish, Demirkan Ayşe, van Klinken Jan Bert, Mook-Kanamori Dennis Owen, van Duijn Cornelia M, 't Hoen Peter A C, Willems van Dijk Ko

机构信息

Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.

Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Genetic Epidemiology Unit, Departments of Epidemiology and Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands.

出版信息

Biochim Biophys Acta. 2014 Oct;1842(10):1923-1931. doi: 10.1016/j.bbadis.2014.05.030. Epub 2014 Jun 4.

Abstract

Increases in throughput and decreases in costs have facilitated large scale metabolomics studies, the simultaneous measurement of large numbers of biochemical components in biological samples. Initial large scale studies focused on biomarker discovery for disease or disease progression and helped to understand biochemical pathways underlying disease. The first population-based studies that combined metabolomics and genome wide association studies (mGWAS) have increased our understanding of the (genetic) regulation of biochemical conversions. Measurements of metabolites as intermediate phenotypes are a potentially very powerful approach to uncover how genetic variation affects disease susceptibility and progression. However, we still face many hurdles in the interpretation of mGWAS data. Due to the composite nature of many metabolites, single enzymes may affect the levels of multiple metabolites and, conversely, levels of single metabolites may be affected by multiple enzymes. Here, we will provide a global review of the current status of mGWAS. We will specifically discuss the application of prior biological knowledge present in databases to the interpretation of mGWAS results and discuss the potential of mathematical models. As the technology continuously improves to detect metabolites and to measure genetic variation, it is clear that comprehensive systems biology based approaches are required to further our insight in the association between genes, metabolites and disease. This article is part of a Special Issue entitled: From Genome to Function.

摘要

通量的增加和成本的降低推动了大规模代谢组学研究,即对生物样品中大量生化成分进行同时测量。最初的大规模研究聚焦于疾病或疾病进展的生物标志物发现,并有助于理解疾病背后的生化途径。首批将代谢组学与全基因组关联研究(mGWAS)相结合的基于人群的研究增进了我们对生化转化(遗传)调控的理解。将代谢物作为中间表型进行测量是揭示遗传变异如何影响疾病易感性和进展的一种潜在非常强大的方法。然而,在解释mGWAS数据方面我们仍然面临许多障碍。由于许多代谢物具有复合性质,单一酶可能会影响多种代谢物的水平,反之,单一代谢物的水平可能会受到多种酶的影响。在此,我们将对mGWAS的当前状况进行全面综述。我们将特别讨论数据库中存在的先验生物学知识在mGWAS结果解释中的应用,并探讨数学模型的潜力。随着检测代谢物和测量遗传变异的技术不断改进,显然需要基于综合系统生物学的方法来进一步深入了解基因、代谢物与疾病之间的关联。本文是名为:从基因组到功能的特刊的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验