López-Portillo Jorge, Ewers Frank W, Méndez-Alonzo Rodrigo, Paredes López Claudia L, Angeles Guillermo, Alarcón Jiménez Ana Luisa, Lara-Domínguez Ana Laura, Torres Barrera María Del Carmen
Red de Ecología Funcional, Instituto de Ecología, A. C., Carretera antigua a Coatepec 351 El Haya Xalapa 91070 Veracruz, México.
Biological Sciences Department, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768 USA.
Am J Bot. 2014 Jun 1;101(6):1013-1022. doi: 10.3732/ajb.1300435. Epub 2014 Jun 6.
• Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na, K, and Cl), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution.
• 研究前提:木质部汁液渗透压和盐度是植物功能中一个关键的未解决问题,对运输效率、压力梯度和活细胞膨压有影响,特别是对于红树林等盐生植物。
• 方法:我们使用真空和压力提取法从白骨壤和拉贡木的茎和枝条中收集连续的木质部导管汁液样本,并测量其渗透压。在使用压力室进行一系列提取后,我们对枝条进行减压,并在不同的平衡期(从几分钟到几小时)后再次加压,以测试渗透压的动态控制。在灌注去离子水或不同海水稀释液的枝条中测量蒸腾作用和最终汁液渗透压。
• 关键结果:对于这两个物种,通过真空提取收集的连续样本的汁液渗透压值是稳定的,并且与用压力室提取的初始样本的值相匹配。用压力室进一步提取样本会降低汁液渗透压,表明发生了反渗透。然而,当在汁液提取后允许更长的平衡期时,汁液渗透压会增加。用高效液相色谱法分析表达的汁液表明,测量的渗透压与汁液中无机离子(主要是钠、钾和氯)的渗透压之间存在1:1的关系,这表明没有受到有机化合物的污染。在灌注去离子水的茎中,汁液渗透压增加以模拟天然汁液渗透压。
• 结论:红树林可动态调节木质部汁液渗透压和离子含量,这可能有助于调节膨压、水力传导率和水势,因此对红树林的生理、生存和分布很重要。