Giner Eugenio, Arango Camila, Vercher Ana, Javier Fuenmayor F
Departamento de Ingeniería Mecánica y de Materiales - CITV, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain.
Departamento de Ingeniería Mecánica y de Materiales - CITV, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain.
J Mech Behav Biomed Mater. 2014 Sep;37:109-24. doi: 10.1016/j.jmbbm.2014.05.006. Epub 2014 May 14.
In this work, we present two strategies for the numerical modelling of microcracks and damage within an osteon. A numerical model of a single osteon under compressive diametral load is developed, including lamellae organized concentrically around the haversian canal and the presence of lacunae. Elastic properties have been estimated from micromechanical models that consider the mineralized collagen fibrils reinforced with hydroxyapatite crystals and the dominating orientation of the fibrils in each lamella. Microcracks are simulated through the node release technique, enabling propagation along the lamellae interfaces by application of failure criteria initially conceived for composite materials, in particular the Brewer and Lagacé criterion for delamination. A second approach is also presented, which is based on the progressive degradation of the stiffness at the element level as the damage increases. Both strategies are discussed, showing a good agreement with experimental evidence reported by other authors. It is concluded that interlaminar shear stresses are the main cause of failure of an osteon under compressive diametral load.
在这项工作中,我们提出了两种用于对骨单位内微裂纹和损伤进行数值建模的策略。建立了单个骨单位在压缩直径载荷下的数值模型,包括围绕哈弗斯管同心排列的骨板以及腔隙的存在。弹性特性已从微观力学模型中估算得出,该模型考虑了用羟基磷灰石晶体增强的矿化胶原纤维以及每个骨板中纤维的主导取向。通过节点释放技术模拟微裂纹,通过应用最初为复合材料设想的失效准则,特别是用于分层的布鲁尔和拉加塞准则,使裂纹能够沿骨板界面扩展。还提出了第二种方法,该方法基于随着损伤增加,单元级刚度的逐渐退化。对这两种策略都进行了讨论,结果表明与其他作者报告的实验证据吻合良好。得出的结论是,层间剪应力是骨单位在压缩直径载荷下失效的主要原因。