Shinya Shoko, Urasaki Atsushi, Ohnuma Takayuki, Taira Toki, Suzuki Akari, Ogata Makoto, Usui Taichi, Lampela Outi, Juffer André H, Fukamizo Tamo
Department of Advanced Bioscience, Kinki University, 3327-204, Nakamachi, Nara 631-8505, Japan.
Department of Bioscience and Biotechnology, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
Glycobiology. 2014 Oct;24(10):945-55. doi: 10.1093/glycob/cwu052. Epub 2014 Jun 6.
Tri-N-acetylchitotriosyl moranoline, (GlcNAc)3-M, was previously shown to strongly inhibit lysozyme (Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T. 2013. A novel transition-state analogue for lysozyme, 4-O-β-tri-Nacetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate. J Biol Chem. 288:6072-6082). The findings prompted us to examine the interaction of di-N-acetylchitobiosyl moranoline, (GlcNAc)2-M, with a family GH19 chitinase from moss, Bryum coronatum (BcChi19A). Thermal unfolding experiments using BcChi19A and the catalytic acid-deficient mutant (BcChi19A-E61A) revealed that the transition temperature (Tm) was elevated by 4.3 and 5.8°C, respectively, upon the addition of (GlcNAc)2-M, while the chitin dimer, (GlcNAc)2, elevated Tm only by 1.0 and 1.4°C, respectively. By means of isothermal titration calorimetry, binding free energy changes for the interactions of (GlcNAc)3 and (GlcNAc)2-M with BcChi19A-E61A were determined to be -5.2 and -6.6 kcal/mol, respectively, while (GlcNAc)2 was found to interact with BcChi19A-E61A with markedly lower affinity. nuclear magnetic resonance titration experiments using (15)N-labeled BcChi19A and BcChi19A-E61A revealed that both (GlcNAc)2 and (GlcNAc)2-M interact with the region surrounding the catalytic center of the enzyme and that the interaction of (GlcNAc)2-M is markedly stronger than that of (GlcNAc)2 for both enzymes. However, (GlcNAc)2-M was found to moderately inhibit the hydrolytic reaction of chitin oligosaccharides catalyzed by BcChi19A (IC50 = 130-620 μM). A molecular dynamics simulation of BcChi19A in complex with (GlcNAc)2-M revealed that the complex is quite stable and the binding mode does not significantly change during the simulation. The moranoline moiety of (GlcNAc)2-M did not fit into the catalytic cleft (subsite -1) but was rather in contact with subsite +1. This situation may result in the moderate inhibition toward the BcChi19A-catalyzed hydrolysis.
三 - N - 乙酰壳三糖基吗啉((GlcNAc)3 - M)先前已被证明能强烈抑制溶菌酶(绪方真、梅本直、大沼彻、沼田隆、铃木明、臼井敏、深见富美子。2013年。一种新型溶菌酶过渡态类似物,4 - O - β - 三 - N - 乙酰壳三糖基吗啉,为共价糖基 - 酶中间体提供了支持证据。《生物化学杂志》。288:6072 - 6082)。这些发现促使我们研究二 - N - 乙酰壳二糖基吗啉((GlcNAc)2 - M)与来自苔藓的冠叶真藓(BcChi19A)的GH19家族几丁质酶的相互作用。使用BcChi19A和催化性酸缺陷突变体(BcChi19A - E61A)进行的热变性实验表明,添加(GlcNAc)2 - M后,转变温度(Tm)分别升高了4.3℃和5.8℃,而几丁质二聚体((GlcNAc)2)仅分别使Tm升高了1.0℃和1.4℃。通过等温滴定量热法,确定(GlcNAc)3和(GlcNAc)2 - M与BcChi19A - E61A相互作用的结合自由能变化分别为 - 5.2和 - 6.6千卡/摩尔,而发现(GlcNAc)2与BcChi19A - E61A的亲和力明显较低。使用(15)N标记的BcChi19A和BcChi19A - E61A进行的核磁共振滴定实验表明,(GlcNAc)2和(GlcNAc)2 - M都与酶催化中心周围区域相互作用,并且对于这两种酶,(GlcNAc)2 - M的相互作用明显强于(GlcNAc)2。然而,发现(GlcNAc)2 - M能适度抑制BcChi19A催化的几丁质寡糖水解反应(IC50 = 130 - 620μM)。BcChi19A与(GlcNAc)2 - M复合物的分子动力学模拟表明,该复合物相当稳定,并且在模拟过程中结合模式没有显著变化。(GlcNAc)2 - M的吗啉部分不适合进入催化裂隙(亚位点 - 1),而是与亚位点 + 1接触。这种情况可能导致对BcChi19A催化水解的适度抑制。