Schaefer Bastian, Mohr Stephan, Amsler Maximilian, Goedecker Stefan
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
J Chem Phys. 2014 Jun 7;140(21):214102. doi: 10.1063/1.4878944.
The Minima Hopping global optimization method uses physically realizable molecular dynamics moves in combination with an energy feedback that guarantees the escape from any potential energy funnel. For the purpose of finding reaction pathways, we argue that Minima Hopping is particularly suitable as a guide through the potential energy landscape and as a generator for pairs of minima that can be used as input structures for methods capable of finding transition states between two minima. For Lennard-Jones benchmark systems we compared this Minima Hopping guided path search method to a known approach for the exploration of potential energy landscapes that is based on deterministic mode-following. Although we used a stabilized mode-following technique that reliably allows to follow distinct directions when escaping from a local minimum, we observed that Minima Hopping guided path search is far superior in finding lowest-barrier reaction pathways. We, therefore, suggest that Minima Hopping guided path search can be used as a simple and efficient way to identify energetically low-lying chemical reaction pathways. Finally, we applied the Minima Hopping guided path search approach to 75-atom and 102-atom Lennard-Jones systems. For the 75-atom system we found pathways whose highest energies are significantly lower than the highest energy along the previously published lowest-barrier pathway. Furthermore, many of these pathways contain a smaller number of intermediate transition states than the previously publish lowest-barrier pathway. In case of the 102-atom system Minima Hopping guided path search found a previously unknown and energetically low-lying funnel.
最小跳跃全局优化方法结合了可物理实现的分子动力学移动和能量反馈,以确保从任何势能阱中逃逸。为了找到反应路径,我们认为最小跳跃特别适合作为穿越势能面的引导,以及作为一对极小值的生成器,这些极小值可作为能够找到两个极小值之间过渡态的方法的输入结构。对于 Lennard-Jones 基准系统,我们将这种最小跳跃引导的路径搜索方法与一种基于确定性模式跟踪的已知势能面探索方法进行了比较。尽管我们使用了一种稳定的模式跟踪技术,该技术在从局部极小值逃逸时能够可靠地沿着不同方向跟踪,但我们观察到最小跳跃引导的路径搜索在寻找最低势垒反应路径方面要优越得多。因此,我们建议最小跳跃引导的路径搜索可以作为一种简单有效的方法来识别能量较低的化学反应路径。最后,我们将最小跳跃引导的路径搜索方法应用于 75 原子和 102 原子的 Lennard-Jones 系统。对于 75 原子系统,我们发现了一些路径,其最高能量明显低于先前发表的最低势垒路径的最高能量。此外,这些路径中的许多路径包含的中间过渡态数量比先前发表的最低势垒路径要少。对于 102 原子系统,最小跳跃引导的路径搜索发现了一个先前未知且能量较低的势阱。