Suppr超能文献

通过阈值光电子成像对HCS₂低电子态的研究。

An investigation into low-lying electronic states of HCS₂ via threshold photoelectron imaging.

作者信息

Qin Zhengbo, Cong Ran, Liu Zhiling, Xie Hua, Tang Zichao, Fan Hongjun

机构信息

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

出版信息

J Chem Phys. 2014 Jun 7;140(21):214318. doi: 10.1063/1.4879808.

Abstract

Low-energy photoelectron imaging spectra of HCS2(-) are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS2(-) to the ground state and low-lying excited states of HCS2 are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS2 radical in the gaseous phase. The ground state and two low-lying excited states of HCS2 radical are assigned as (2)B2, (2)A2, and (2)A1 states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T0 = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.

摘要

首次报道了HCS2(-)的低能光电子成像光谱。观察到从HCS2(-)基态到HCS2基态和低激发态的振动分辨光解离跃迁。结合从头算计算和弗兰克-康登模拟,分辨良好的振动光谱为气相中HCS2自由基基态和激发态的分辨提供了确凿证据。HCS2自由基的基态和两个低激发态分别被指定为(2)B2、(2)A2和(2)A1态。绝热电子亲和能确定为2.910±0.007 eV。激发态的项能量T0 = 0.451±0.009 eV和0.553±0.009 eV分别直接从实验数据中测量得到。进行角滤波光电子能谱以辅助光谱带的归属。

相似文献

3
Low-lying electronic states of cyclopentadienone.环戊二烯酮的低电子态
J Phys Chem A. 2014 Aug 28;118(34):6965-70. doi: 10.1021/jp506237u. Epub 2014 Aug 15.
5
Vibrationally resolved photoelectron imaging of Au3H(-).Au3H(-)的振动分辨光电子成像。
J Phys Chem A. 2014 Feb 13;118(6):1031-7. doi: 10.1021/jp411639r. Epub 2014 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验