Docampo-Álvarez Borja, Gómez-González Víctor, Méndez-Morales Trinidad, Carrete Jesús, Rodríguez Julio R, Cabeza Óscar, Gallego Luis J, Varela Luis M
Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n E-15782, Santiago de Compostela, Spain.
Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n E-15008, A Coruña, Spain.
J Chem Phys. 2014 Jun 7;140(21):214502. doi: 10.1063/1.4879660.
In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of NO3 anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with NO3 in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures.
在这项工作中,通过经典分子动力学模拟分析了分子共溶剂(水、乙醇和甲醇)对这些化合物与质子离子液体(硝酸乙铵)混合物结构的影响。其中包括对这些混合物密度的尚未报道的测量,用于测试我们参数化的势能。通过计算配位数和体系中氢键分数,以及混合物中各种分子物种和分子离子的径向分布函数和空间分布函数,报道了整个浓度范围内混合物结构的演变。总体情况表明,添加的共溶剂分子存在均匀混合过程,它们逐渐融入质子离子液体的氢键网络,这与非质子对应物的情况相反。此外,在质子水混合物中未检测到类似于非质子混合物中的水簇,但在水摩尔浓度约为60%时,离子液体阳离子极性头的第一水合壳层中的NO3阴离子出现了某种程度的突然取代。水和醇的空间分布函数在配位类型上有所不同,因为水在阴离子的赤道平面以双齿方式与NO3配位,而醇以单齿方式配位,竞争阴离子的氧原子。最后,通过计算不同共溶剂分子的速度自相关函数,也报道了它们的碰撞时间,观察到水分子存在笼效应,而在醇混合物中未观察到。