Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela E-15782, Spain.
Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, Avenida do Mestre Mateo 25, Santiago de Compostela E-15782, Spain.
J Chem Inf Model. 2024 Jan 8;64(1):164-177. doi: 10.1021/acs.jcim.3c01688. Epub 2023 Dec 21.
We combined both density functional theory and classical molecular dynamics simulations to investigate the molecular mechanisms governing hydrogen solvation in a total of 12 ionic liquids. Overall, the analysis of the structural properties under high temperature and pressure conditions revealed weak interactions between hydrogen and the ionic liquids, with a slight preference of this gas to be placed at the apolar domains. Interestingly, those ionic liquids comprising nitrate anions allow the accommodation of hydrogen molecules also in the polar areas. The study of the hydrogen velocity autocorrelation functions supports this observation. In addition, the structure of all of the tested ionic liquids was almost insensitive to the addition of hydrogen, so the available free volume and cavity formation are presumably the most important factors affecting solubility.
我们综合运用密度泛函理论和经典分子动力学模拟方法,研究了总共 12 种离子液体中氢的溶剂化分子机制。总的来说,高温高压条件下结构性质的分析表明,氢与离子液体之间存在较弱的相互作用,这种气体稍微倾向于位于非极性区域。有趣的是,那些包含硝酸盐阴离子的离子液体允许氢分子也进入极性区域。氢分子速度自相关函数的研究支持了这一观察结果。此外,所有测试的离子液体的结构对氢的添加几乎没有敏感性,因此可用的自由体积和空穴形成可能是影响溶解度的最重要因素。