Wintermark Max, Tustison Nicholas J, Elias William J, Patrie James T, Xin Wenjun, Demartini Nicholas, Eames Matt, Sumer Suna, Lau Benison, Cupino Alan, Snell John, Hananel Arik, Kassell Neal, Aubry Jean-Francois
Department of Radiology, Neuroradiology Division, University of Virginia, Charlottesville, VA, USA. Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
Phys Med Biol. 2014 Jul 7;59(13):3599-614. doi: 10.1088/0031-9155/59/13/3599. Epub 2014 Jun 9.
Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called 'virtual CT' to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland-Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (-0.22-0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the maximum temperature elevation in the phantom (7% relative drop). Without any correction, the maximum temperature was down 6 °C (43% relative drop). We have developed an approach that allows for a reconstruction of a virtual CT dataset from MRI to perform phase correction in TcMRgFUS.
精确聚焦对于经颅磁共振成像引导的聚焦超声(TcMRgFUS)至关重要,可将对非病变组织的附带损伤降至最低,并在可接受的功率沉积水平下达到能够诱导凝固性坏死的温度。CT通常用于这种重新聚焦,但在TcMRgFUS手术之前需要单独进行一项研究(CT)。本研究的目的是确定使用适当序列的MRI是否可以作为CT的可行替代方法,用于在TcMRgFUS中规划超声重新聚焦。我们对已经进行过CT扫描的患者测试了三种MRI脉冲序列(3D T1加权三维容积内插屏气检查(VIBE)、质子密度加权三维采样完美成像并应用不同翻转角演化优化对比度以及三维稳态进动快速成像T2加权成像)。我们基于MRI数据对颅骨结构进行了详细测量,并将这些所谓的“虚拟CT”与基于CT数据的颅骨结构详细测量结果进行比较,后者用作参考标准。然后,我们将标准CT和虚拟CT都加载到TcMRgFUS设备中,并比较计算出的相位校正值以及体模中的温度升高情况。一系列Bland-Altman测量一致性分析表明,就最小化MRI得出的总颅骨厚度测量值与CT得出的总颅骨厚度测量值之间的测量差异而言,T1 3D VIBE是最佳的MRI序列(平均测量差异:0.025;95%置信区间(-0.22 - 0.27);p = 0.825)。T1加权序列在估计颅骨CT密度和颅骨层厚度方面也是最佳的。在患者中,用标准CT计算的相移与从T1数据集重建的虚拟CT之间的平均差异为0.08±1.2弧度,在体模中为0.1±0.9弧度。与真实CT相比,基于MR的校正显示体模中的最高温度升高下降了1°C(相对下降7%)。未经任何校正时,最高温度下降了6°C(相对下降43%)。我们已经开发出一种方法,可从MRI重建虚拟CT数据集,以在TcMRgFUS中进行相位校正。